博碩士論文 975201054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.239.40.250
姓名 黃鴻文(Hong-wen Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學
(Very-High Temperature(200 ℃)and High-Speed Operation of Cascade GaN Based Green Light Emitting Diode and Investigation of the Internal Carrier Dynamic)
相關論文
★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體
★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器
★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器
★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射
★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本篇論文中,我們展示了新的串接式綠光發光二極體以應用於塑膠光纖車內通訊,並且具有極高的溫度忍受性(200 ℃)。串接三顆綠光發光二極體的元件能直接藉由汽車的驅動電壓12伏來操作,避免額外串聯電阻造成功率的浪費。藉由在N-contact層與主動區之間增加了一層氮化銦鎵緩衝層,此新的LED和無緩衝層的樣本相較之下有較小的turn on電壓(9.3伏 vs. 11伏 在20 mA)、較大的飽和輸出功率(25.5毫瓦 vs. 22.5毫瓦 在180 mA )、較寬的頻寬 (100 MHz vs. 40 MHz,在定電壓12伏下),更佳的電流分佈效果,以及高溫下較低的功率退化 (約-0.1 %℃-1)。此元件操作在170mA下即可達到300Mbit/sec的資料傳輸,且在200 ℃下無明顯退化。
此外,為了研究LED的內部載子動力學,我們也開發了新穎的Electrical-Optical pump-probe方法。透過直接注入短脈衝電信號激發,此方法可以直觀地得到樣本的光響應波形,以分析其原始的載子動力學。以此方法分析我們的新元件,我們確認了所觀測到的高電流下效率衰退(efficiency droop)現象主要歸因於歐傑復合效應,且其內部響應時間與串接數無關。
摘要(英) We demonstrate a novel type of linear cascade green light-emitting diode (LED) arrays as a light source for in-car or harsh environment plastic optical fiber (POF) communications. To further enhance its dynamic and static performance, an InGaN layer is inserted between an n-type GaN cladding layer and InGaN/GaN multiple quantum wells as an efficient current spreading layer. Compared with the control device without that layer, our three-LED cascade
array demonstrates a smaller turn-on voltage (9.3 vs. 11V at 20mA) and a larger output power (25.5mW vs. 22.5mW at 180mA), corresponding to anenhancement of around 31% in wall-plug efficiency. Furthermore, under a constant voltage bias of an in-car battery (12V), our three-LED array exhibits a superior E-O 3-dB bandwidth (100 vs.40MHz) performance to that of the control. Even under high-temperature dynamic operation, we observe that the InGaN insertion layer strongly enhances modulation-speed with negligible degradation of the output power, unlike red resonant-cavity LEDs conventionally used for POF. 200Mbit/sec error-free transmission is achieved at 200℃ which is the highest operation temperature among all the reported high-speed LEDs.
For the first time, internal carrier dynamic inside GaN-based green light-emitting-diodes (LEDs) during operation is directly observed by using demonstrated technique; electrical-optical pump-probe. By pumping short electrical pulses (~10ps) into high-speed cascade green LED, we can probe its output optical pulses by use of high-speed photo-receiver circuits. Based on such method, the recombination time constant of carriers can be measured directly without any assumption on recombination process. A high-speed cascade LED structure is adopted in our experiment to eliminate influence of RC-delay time on measured responses. Our measurement result indicates that both single and cascade three-LED structure have the same internal response time due to current continuity. Furthermore, according to measured responses under different temperatures (25℃ to 200℃), the origin of efficiency droop of GaN-based green LED under high bias current density may be attributed to strong non-radiative Auger effect instead of device heating or carrier over-flow.
關鍵字(中) ★ 綠光發光二極體
★ 串接式
★ 氮化鎵
關鍵字(英) ★ Cascade
★ Green light emitting diode
★ GaN
論文目次 摘要 i
Abstract ................................................................................................ ii
目錄 v
圖表目錄 ............................................................................................. vii
第一章 導論 ......................................................................................... 1
§1-1 發光二極體之介……………………………………………………….. 1
§1-2 塑膠光纖發展趨勢與其應用………………………………………… 3
§1-3 高速綠光串接式發光二極體………………………………………...12
§1-4 具有InGaN 插入層的高速綠光串接式發光二極體……...……13
§1-5 高速串接式發光二極體之內部載子動力學………………….…. 14
§1-6 研究動機和論文架構 ……………………………………………….17
第二章 串接式氮化鎵發光二極體之分析 .................................... 18
§2-1 氮化鎵發光二極體電流壅塞效應 ................................................... 18
§2-2 發光二極體調制速度之限制 .................................................... 21
§2-3 發光二極體對於車用所面臨問題 ............................................ 22
§2-4 串接式氮化鎵發光二極體 ........................................................ 23
第三章 串接式氮化鎵發光二極體元件結構及製程 .................... 25
§3-1 串接式氮化鎵發光二極體元件結構 ......................................... 25
§3-2 串接式氮化鎵發光二極體製作結果與流程 ............................. 27
第四章 串接式氮化鎵發光二極體量測結果與討論 ...................... 34
§4-1 串接式氮化鎵發光二極體之電特性量測 ................................. 34
§4-2 串接式氮化鎵發光二極體之光特性量測 ................................. 36
§4-3 串接式氮化鎵發光二極體調變速度之量測 ................................. 39
§4-4 串接式氮化鎵發光二極體之變溫特性量測...................................42
§4-5 串接式氮化鎵發光二極體之內部載量 .......................................... .48
第五章 結論 ....................................................................................... 58
參考文獻…………………………………………………………… 59
參考文獻 [1] Kevin Linthicum, Thomas Gehrke, Darren Thomson, Eric Carlson, Pradeep Rajagopal, Tim Smith, Dale Batchelor, and Robert Davis, “Pendeoepitaxy of gallium nitride thin films,” Appl. Phys. Lett.75,196(1999).
[2] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855(2004).
[3] Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93, 9383(2003).
[4] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y-C, Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Garder, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379(2001).
[5] M. Koike, N. Koide, S. Asami, J. Umezaki, S. Nagai, S.Yamasaki, N. Shibata, H. Amano, and I. Akasaki, “InGaN/GaN multiple quantum wells green LEDs,” in Proc. SPIE International Society for Optical Engineering, vol.3002, pp.36-39(1997).
[6] Sung-Pyo Jung, Chien-Hung Lin, Hon Man Chan, Zhiyong Fan, J. Grace Lu, and Henry P. Lee, “High transparency low resistance oxidized Ni/Au-ZnO contacts to p-GaN for high performance LED applications” phys. stat. sol. (a)201, no.12, 2827-2830(2004).
[7] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrate,” IEEE Photon. Technol. Lett. , vol. 17, no. 2, Feb. 2005
[8] MOST Cooperation, Specification Rev. 2.4, May, 2005.
[9] B. Luecke, “Plastic optical fiber steps out of the niche,” Laser Focus World, pp. 91-95, April, 2008.
[10] R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. of SPIE, vol. 6013, pp.60130F-1-60103F-8, SPIE, Bellingham, WA, 2005.
[11] M. Akhter, P. Maaskant, B. Roycroft, B. Corbett, P. de Mierry, B. Beaumont and K. Panzer, “200Mbit/s data transmission through 100m of plastic fiber with nitride LEDs,” Electron. Lett., vol. 38, pp.1457-1458, Nov., 2002.
[12] J.-W. Shi, H.-Y. Huang, J.-K. Sheu, C.-H. Chen, Y.-S. Wu, and W.-C. Lai, “The improvement in Modulation Speed of GaN-Based Light-Emitting Diode (LED) by Use of n-Type Barrier Doping for Plastic Optical Fiber (POF) Communication,” IEEE Photon. Technol. Lett., vol. 18, pp. 1636-1638, Aug., 2006.
[13] J.-W. Shi, J.-K. Sheu, C.-K. Wang, C.-C. Chen, C.-H. Hsieh, J.-I. Chyi, and W.-C. Lai, “Linear Cascade Arrays of GaN Based Green Light Emitting Diodes for High-Speed and High-Power Performance,” IEEE Photon. Technol. Lett., vol. 19, pp. 1368-1370, Sep., 2007.
[14] J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-Speed GaN-based Green Light Emitting Diodes with Partially n-doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett., vol. 29, pp. 158-160, Feb., 2008.
[15] S. Y. Hua
ng, R.-H. Horng, P. L. Liu, J. Y. Wu, H. W. Wu, and D. S. Wuu, “Thermal Stability Improvement of Vertical Conducting Green Resonant-Cavity Light-Emitting Diodes on Copper Substrates,” IEEE Photon. Technol. Lett., vol. 20, pp. 797-799, May, 2008.
[16] A. Mednik, “Automotive LED Lighting Needs Special Drivers,” Power Electronics Technology, pp. 22-28, Aug., 2005.
[17] J. D. Lambkin, B. McGarvey, M. O’Gorman and T. Moriarty, “RCLEDs for MOST and IDB 1394 Automotive Applications,” Proceedings of the 14th International Conference on Polymer Optical Fiber, Hong Kong, 2005.
[18] Hyunsoo Kim, Ji-Myon Lee, Chul Huh, Sang-Woo Kim, Dong-Joon Kim, Seong-Ju Park, and Hyunsang Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett. 77,1903(2000).
[19] Hyunsoo Kim, Seong-Ju Park, Hyunsang Hwang, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,“ Appl. Phys. Lett. 81, 1326(2002).
[20] X. Guo and E. F. Schubert, “Current Crowding and Optical Saturation Effects in GaInN/GaN Light-Emitting Diodes,” J. Appl. Phys. 78, 3337(2001).
[21] E. F. Schubert, “LIGHT-EMITTING DIODE”, CAMBRIDGE UNIVERSITY PRESS.
[22] C. C. Hsu, Y. C. Lee, S. P. Yang, P. S. Lee, M. L. Wu, and J. Y. Chang, ‘‘III-nitride Based LED with Omni-directional Light Extraction Enhancement,” 6th International Conference on Optics-photonics Design & Fabrication, Taipei, Taiwan, pp. 355-356, June, 2008.
[23] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films”,Jpn. J. Appl. Phys. 31,1258 (1992).
[24] M. S. Minsky, M. White, and E. L. Hu,“Room-temperature photoenhanced wet etching of GaN”,Appl. Phys. Lett. 68, 1531 (1996).
[25] C. Youtsey , I. Adesida , L. T. Romano and G. Bulman, “Smooth n-type GaN surfaces by photoenhanced wet etching”,Appl. Phys. Lett. 72, 560 (1997).
[26] J. K. Sheu , Y. K. Su ,G. C. Chi ,W. C. Chen, C. Y. Chen, C. N. Huang,J. M. Hong,Y. C. Yu, C. W. Wang, and E. K. Lin,“The effect of thermal annealing on the Ni/Au contact of p-type GaN”, J. Appl. Phys. 83, 3172 (1998).
[27] Li-Chien Chen, Fu-Rong Chen, Ji-Jung Kai,Li Chang,Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih,“Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN ”, J. Appl. Phys. 86, 3826 (1999).
[28] Jin-Kuo Ho , Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett. 74, 1275 (1999).
[29] Y. Koide,S. Yamasaki, S. Nagai, J. Umezaki, M. Koike and Masanori Murakami,“Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces”, J. Appl. Phys. 81, 1315 (1997).
[30] P. Modh, S. Galt, J. Gustavsson, S. Jacobsson, and A. Larsson, “Linear Cascade VCSEL Arrays With High Differential Efficiency and Low Differential Resistance,” IEEE Photon. Technol. Lett., vol. 18, pp. 283-285, Jan., 2006.
[31] M. Pessa, M. Guina, M. Dumitrescu, I. Hirvonen, M. Saarinen, L. Toikkanen, and N. Xiang, “Resonant cavity light emitting diode for a polymer optical fiber system,” Semicond. Sci. Technol., vol. 17, pp. R1-R9, May, 2002.
[32] L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits.” JOHN WILEY & SONS, INC Chapter 4.
[33] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 183507, Oct., 2007.
[34] A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 92, pp. 053502, Feb., 2008.
[35] S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y. Noh, D.-J. Kim, Y.-C. Kim, and S.-J. Park, “Effect of electron blocking layer in efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, pp. 231123, June, 2009.
[36] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination in nitrides form first principles,” Appl. Phys. Lett., vol. 94, pp. 191109, May, 2009.
[37] C.-K. Sun, Y.-L. Huang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Ultrafast electron dynamics in GaN,” Physical Review B, vol. 59, no. 21, pp. 13535-13538, June, 1999.
[38] K.-G. Gan, C.-K. Sun, S. P. DenBaars, and J. E. Bowers, “Ultrafast valence intersubband hole relaxation in InGaN multiple-quantum-well laser diodes,” Appl. Phys. Lett., vol. 84, no. 23, pp. 4675-4677, June, 2004.
[39] A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett., vol. 96, pp. 103504, March, 2010.
[40] J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-Speed GaN-based Green Light Emitting Diodes with Partially n-doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett., vol. 29, pp. 158-160, Feb, 2008.
[41] J.-W. Shi, P-.Y. Chen, C.-C. Chen, J.-K. Sheu, W.-C. Lai, Yun-Chih Lee, Po-Shen Lee, Shih-Pu Yang, and Mount-Learn Wu, “Linear Cascade GaN Based Green Light Emitting Diodes with Invariant High-Speed/Power Performance under High-Temperature Operation,” IEEE Photon. Technol. Lett., vol. 20, pp. 1896-1898, Dec., 2008.
[42]J.-W. Shi, J.-K. Sheu, C.-K. Wang, C.-C. Chen, C.-H. Hsieh, J.-I. Chyi, and W.-C. Lai, “Linear Cascade Arrays of GaN Based Green Light Emitting Diodes for High-Speed and High-Power Performance” IEEE Photon. Technol. Lett., vol. 19, pp. 1368-1370, Sep., 2007.
[43]H. Haratizadeh, B. Monemar, P. P. Paskov, J. P. Bergman, B. E. Sernelius, and P. O. Holtz, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Photoluminescence study of Si-doped GaN/Al0.07Ga0.93N multiple quantum wells with different dopant positions” Appl. Phys. Lett., vol. 84, pp. 5071-5073, June, 2004.
[44]N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Wantanabe, W. Gotz, and M. R. Krames, “Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2, ” Appl. Phys. Lett., vol. 91, pp. 243506, Dec., 2007.
[45]Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett., vol. 91, pp. 141101, Oct., 2007.
[46] C.-H. Jang, J.-K. Sheu, C. M. Tsai, S.-J. Chang, W.-C. Lai, M.-L. Lee, T. K. Ko, C. F. Shen, and S. C. Shei, “Improved Performance of GaN-Based Blue LEDs With the InGaN Insertion Layer Between the MQW Active Layer and the n-GaN Cladding Layer,” IEEE J. Quantum Electron., vol. 46, pp. 513-517, April, 2010.
[47]H. M. Chung, W. C. Chuang, Y. C. Pan, C. C. Tsai, M. C. Lee, W. H. Chen, W. K. Chen, C. I. Chiang, C. H. Lin, and H. Chang, Appl. Phys. Lett. 76, 897,2000.
[48] Y. C. Shen,a_ G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm , and M. R. Krames, Appl. Phys. Lett . 91,141101
[49] Martin F. Schubert,Qi Dai, Jiuru Xu, Jong Kyu Kim, and E. Fred Schubert, Appl. Phys. Lett. 95,191105,2009
[50] J. Piprek, R. Farrell, S. P. Denbaars, and S. Nakamura, “Effects of Built-In Polarization on InGaN-GaN Vertical-Cavity Surface-Emitting Lasers” IEEE Photon. Technol. Lett., vol. 18, pp. 7-9, Jan., 2006.
[51]Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55 μm Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, Apr., 2006.
[52]D. A. Tauber, R. Spickermann, R. Nagarajan, T. Reynolds, A. L. Holmes, Jr., and J. E. Bowers, “Inherent bandwidth limits in semiconductor lasers due to distributed microwave effects,” Appl. Phys. Lett., vol. 64, No. 13, pp. 1610-1612, Mar., 1994.
[53]P. Modh, S. Galt, J. Gustavsson, S. Jacobsson, and A. Larsson, “Linear Cascade VCSEL Arrays With High Differential Efficiency and Low Differential Resistance,” IEEE Photon. Technol. Lett., vol. 18, pp. 283-285, Jan., 2006.
[54]L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” chapter 4, John Wiley & Sons, New York, 1995.
[55]Jin-Wei Shi, H.-W. Huang, F.-M. Kuo, M. L. Lee, and J.- K. Sheu, “Very-High Temperature (200°C) Operation of GaN-Based Cascade Green Light Emitting Diode for Plastic Optical Fiber Communication,” in Proc. OFC 2010, San Diego, CA, USA, Mar., 2010, pp. JWA42.
[56]Horng-Shyang Chen, Chih-Feng Lu, Dong-Ming Yeh, Chi-Feng Huang, Jian-Jang Huang, and Chih-Chung Yang, “Orange-Red Light-Emitting Diodes Based on a Prestrained InGaN-GaN Quantum-Well Epitaxy Structure,” IEEE Photon. Technol. Lett., vol. 18, No. 21, Nov., 2006
指導教授 許晉瑋(Jin-wei Shi) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明