博碩士論文 975201058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:144 、訪客IP:3.135.205.146
姓名 翁瑋呈(Wei-Cheng Weng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
(32Gbit/s Low-Power-Consumption 850nm Vertical-Cavity Surface-Emitting Lasers with Strained InAlGaAs-MQWs)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體
★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器
★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器
★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射
★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們已證明了具有鋅擴散之850奈米波段面射型雷射有很好的特性。在主動層上運用了具有應力InAlGaAs之多層量子井結構,而在同樣850奈米波段中與具有應力InGaAs多層量子井相較下,我們有較厚的主動層與較好的晶圓均勻性。我們的元件利用兩種不同擴散深度與相同水氧化孔徑(約6μm),來分別優選靜態、動態與功率特性。擴散較深的元件具有較好的靜態特性。它具有很低的臨限電流(0.8mA),高的微分量子效率(90%),而且有著最大功率9.7mW並在所有偏流範圍內仍維持著近單一之中心波長模態輸出。另外具有較淺的鋅擴散元件(~0.6μm),有著很好的動態特性,而且他顯示出有很大的調變電流效率(9.5GHz/mA1/2 ), 很高的資料量(32 Gbit/s error-free),和一個很大資料量對應功率消耗之斜率(5.25Gbps/mW),並有著非常低的峰對峰驅動電壓(Vp-p=0.25V)。這些靜態與動態之量測結果顯示出具有應力之InAlGaAs多層量子井與鋅擴散技術有著非常好的表現。
摘要(英) We demonstrate a high-performance Zn-diffusion 850nm vertical-cavity surface-emitting laser (VCSEL). By use of the strained InAlGaAs multiple quantum wells (MQWs) as active region, our structure can have a much thicker well width and better wafer uniformity than those of strained InGaAs MQWs at the same 850nm wavelength. Two different Zn-diffusion depths were adopted in our devices with the same oxide current-confined aperture (~6μm) to optimize the static and dynamic power performance, respectively. The device with a deep Zn-diffusion depth (~1.2μm) is for the optimized static performance. It shows a low threshold current (0.8mA), a high differential quantum efficiency (90%), and can sustain the single fundamental-mode output with a maximum output power of 9.7mW under the full range of bias currents. On the other hand, device with a shallow Zn-diffusion depth (~0.6μm) is used for good dynamic performance and it exhibits a high modulation current efficiency (9.5 GHz/mA1/2), very high-data rate(32Gbit/sec error-free)performance,and very-high data-rate/power-dissipation ratio (5.25 Gbps/mW) with an extremely small peak-to-peak driving voltage (Vpp: 0.25V). These dynamic and static measurement results clearly indicate that the advantages of using InAlGaAs strained MQWs and Zn-diffusion techniques for 850nm VCSELs.
關鍵字(中) ★ 850nm面射型雷射 關鍵字(英) ★ 850nm vcsels
★ strained MQWs
論文目次 第一章 序 論 ....................................................................................................... 1
? 1-1 多媒體時代 ........................................................................................................ 1
? 1-2 光連結應用 ........................................................................................................ 1
? 1- 3 面射型雷射簡介 ................................................................................................ 6
? 1- 4 超高速、低耗能VCSEL 製作 .......................................................................... 8
? 1- 5 高可靠度製作 .................................................................................................. 14
第二章 理 論 ..................................................................................................... 16
? 2-1 VCSEL 的磊晶結構 .......................................................................................... 16
? 2-2 鋅擴散於DBR ................................................................................................. 20
? 2-3 VCSEL 的選擇性水氧化理論 .......................................................................... 22
? 2-4 發散角 .............................................................................................................. 24
第三章 實 驗 ..................................................................................................... 27
? 3-1 鋅擴散製程 ...................................................................................................... 27
? 3-2 水氣氧化 .......................................................................................................... 29
? 3-3 製作電極以及金屬回火(Annealing) ............................................................... 31
? 3-4 帄坦化及製作金屬接線依附在半絕緣層上 ................................................... 33
第四章 量測結果與討論................................................................................... 36
? 4.1 量測系統 ............................................................................................................ 36
? 4.1.1. 電流對電壓(I-V)的量測系統 ............................................................... 36
? 4.1.2. 光功率對電流(L-I)之量測系統 ........................................................... 36
? 4.1.3. 遠場(Far field)之量測系統 .................................................................. 37
? 4.1.4. 近場(Near field)投影之量測系統 ........................................................ 37
? 4.1.5. 頻譜(Spectrum) 之量測系統 ............................................................... 38
? 4.1.6. 頻寬(Bandwidth)之量測系統 ............................................................... 38
? 4.1.7. 眼圖(Eye pattern)之量測系統 .............................................................. 39
? 4.2 單模態型VCSEL 量測結果 ............................................................................ 39
? 4.2.1. 電流對電壓(I-V)曲線 ..................................................................... 39
? 4.2.2. 輸出光功率對電流(L-I)曲線 .......................................................... 40
? 4.2.3. 近場(Near field)投影 ....................................................................... 41
? 4.2.4. 光頻譜(Optical spectra)圖 .................................................................... 42
? 4.2.5. 頻寬(Bandwidth) 和D 係數(D-factor) .......................................... 42
? 4.3 不同擴散深度VCSEL 分析 ............................................................................ 45
? 4.3.1. VCSEL 元件結構圖 .............................................................................. 45
? 4.3.2. 電流對電壓(I-V)曲線和光功率對電流(L-I)曲線…………………... 46
? 4.3.3. 近場(Near field)投影 ....................................................................... 47
? 4.3.4. 遠場(Far field)發散角(Divergence angle) ......................................... 48
? 4.3.5. 頻寬(Bandwidth) ................................................................................... 50
? 4.3.6. S11、S21 參數模擬 .............................................................................. 50
? 4.3.7. K 參數(K-parameter) ............................................................................. 55
? 4.3.8. 眼圖(eye pattern)量測 ..................................................................... 58
? 4.3.9. D 係數(D-factor) .............................................................................. 60
? 4.4 不同溫度VCSEL 分析 .................................................................................... 61
? 4.4.1. 高溫眼圖(eye pattern)量測與BER 分析 ............................................. 61
? 4.5 Benchmark ......................................................................................................... 62
第五章 結論與未來研究................................................................................... 63
參考資料 ............................................................................................................. 64
參考文獻 Reference
[1] “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008 , pp. OMK5, San Diego, CA, Feb., 2008.
[2] NEIL SAVAGE, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
[3] Shigeru Nakagawa, Daniel Kuchta, Clint Schow, Richard John, Larry A. Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb. 2008.
[4] Jin-Wei Shi, C.-C. Chen, Y.-S. Wu, Shi Hao Guol, and Ying-Jay Yang“The Influence of Zn-Diffusion Depth on the Static and Dynamic Behavior of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at an 850 nm Wavelength"IEEE J. Quantum Electron., vol. 45, no. 7, July 2009
[5] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” in Proc. SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007.
[6] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized Vertical-cavity surface-emitting lasers” IEEE, Photon. Technol. Lett. , vol. 2, 234, 1990.
[7] Å. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, Member, IEEE, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, Feb. 2004.
[8] Å. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, Member IEEE,” Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, Aug. 2005.
[9] Akio Furukawa, Satoshi Sasaki, Mitsunari Hoshi, Atsushi Matsuzono, Kosuke Moritoh , Toshihiko Baba,” High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. ,vol 85, no. 22, Nov. 2004.
[10] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001
[11] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007
[12] Chang, Y.-C., Wang, C.S., and Coldren, L.A.: ‘Small-dimension powerefficient high-speed vertical-cavity surface-emitting lasers’, Electron. Lett., 2007, 43, pp. 396–397
[13] Speed 1.1-μm-Range VCSELs With InGaAs/GaAsP-MQWs”, IEEE J. Quantum Electron. , vol. 46, no. 6, June 2010.
[14] Sorcha B. Healy, Eoin P. O’Reilly, Johan S. Gustavsson, Petter Westbergh, Åsa Haglund, Anders Larsson, and Andrew Joel, “Active Region Design for High-Speed 850-nm VCSELs”, IEEE J. Quantum Electron., vol. 46, no. 4, Apr. 2010
[15] P.Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, 2009.
[16] S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett., vol. 45, no. 10, pp. 501–503, 2009.
[17] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber”, Elec. Lett. 13th, vol. 26 No.19,(1990)
[18] Y.J. Yang, T.G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting lser”, Soc. Photo-opt Instrun. Eng.,vol. 1418, pp.414-421,(1991).
[19] Y.J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang,”Low threshold operation of a GaAs single quantum wll mushroom structure surface emitting laser”, Appl. Phys. Lett., 58, pp.1780-1782(1991).
[20] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures.” J. Appl. Phys. ,73, pp3769-3781 (1993).
[21] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion ” J. Appl. Phys.55, p.607(1984).
[22] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion“ Appl.Phys.Lett.38,776,(1981).
[23] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice”Semicond. Sci. Technol., 4, pp.841-846, (1989).
[24] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 (民國90年)
[25] R. G. Hunsperger, Integrated Optics:Theory and Technology, Hong Kong, Springer-Verlag, 77, (1992).
[26] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett. 47, p.1193, (1985).
[27] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[28] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon”, J. Appl. Phys., vol. 36, p. 3770, (1965).
[29] M. Ochiai et al., Appl. Phys. Lett., 68, 1898(1996)][J. H. Kim , Appl. Phys. Lett. ,69, 3357(1996).
[30] Kent D. Choquette, Member, IEEE, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, Member, IEEE, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, June 1997.
[31] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers” Photon. Tech. Lett. 7, 1237, (1995).
[32] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent #5,262,360 (1993).
[33] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69, 1935-1837 (1996).
[34] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, pp.740-742,(1996).
[35] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,”Appl. Phys. Lett., vol 66, pp.1723-1725, (1995).
[36] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[37] Hermann A. Haus,”Waves and Fields in Optoelectronics”(1984).
[38] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, July 2008.
[39] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers”, J. Quantum Electron., 33, 1810-1824,(1997).
[40] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[41] T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” in Proc. Conf. Lasers Electro-Opt. (CLEO 2005), pp. 1381–1383, Paper CWI3.
[42] L.A. COLDREN, S.W. CORZINE, “Diode Lasers and Photonic Integrated Circuits,” Wiley October 1995.
[43] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun. 2004.
[44] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[45] Chao-Kun Lin, Member, IEEE, Ashish Tandon, Kostadin Djordjev, Scott W. Corzine, and Michael R. T. Tan, Member, IEEE, “High-Speed 985 nm Bottom-Emitting VCSEL Arrays for Chip-to-Chip Parallel Optical Interconnects” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, Sep./Oct. 2007.
[46] Jin-Wei Shi, C.-C. Chen, Y.-S. Wu, Shi Hao Guol, and Ying-Jay Yang” The Influence of Zn-Diffusion Depth on the Static and Dynamic Behavior of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at an 850 nm Wavelength” IEEE J. Quantum Electron.
[47] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett.,vol. 43, no. 19, pp. 1022–1023, Sep. 13, 2007.
指導教授 許晉瑋(J.-W. Shi) 審核日期 2010-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明