博碩士論文 975201060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:34.204.200.74
姓名 蔡孟修(Meng-Hsiu Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波/毫米波頻段寬頻振盪器與次諧波注入式鎖態振盪器
(Microwave/Millimeter-wave VCO with Wide Tuning Range and Subharmonic Injection-Locked Oscillators)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 離子佈植砷化鎵金屬半導體場效電晶體之研究
★ 碰撞游離係數的量測及其在異質接面雙極性電晶體之設計應用★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體之研製及其集極調變對元件特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 應用於微波及毫米波頻段的通訊電路漸漸在生活中普及,而振盪器為通訊系統中不可或缺的電路。注入式振盪器即是利用額外注入訊號的方式改善振盪器的相位雜訊,並廣泛的被使用在射頻電路當中。在本論文中探討注入式鎖態的過程和原理,且透過相關文獻中注入式鎖態振盪器模型的推導,以便了解注入式鎖態振盪器的注入階數、鎖態範圍及相位雜訊等特性。
在本論文主要分成兩部份,首先討論藉由SiGe BiCMOS製程與使用ADS模擬軟體,實作出工作於K-band的壓控振盪器。設計重點為利用異質接面雙極性電晶體並聯金氧半場效電晶體當作可變電容器,使得振盪器具有較寬的調頻範圍;此振盪器最大的可調頻率範圍為16.5 GHz到19.85 GHz。第二部份是採用BiFET和GaAs pHEMT製程,分別實作出50 GHz以及75 GHz的次諧波注入式鎖態振盪器。這二個次諧波注入式鎖態振盪器具有低相位雜訊、寬頻鎖態範圍及高輸出功率的特性。最後討論使用壓控振盪器實現頻移鍵控信號的調變,並經由注入式鎖態振盪器達到頻移鍵控信號解調的效果。
摘要(英) The communication circuits applied in microwave and millimeter-wave frequency ranges have being gradually popularized in our life. Among the circuits, the oscillator constitutes an important circuit in the communication system. The injection-locked oscillator can improves the phase noise of the output signal by means of additionally injecting signals. This thesis explores the process and principle of the injection-locked oscillator and the deductions on the injection-locked oscillator models based on the relevant literatures.
This thesis is mainly divided into two parts. In the first part, it explores how to make voltage-controlled oscillator at K-band by using SiGe BiCMOS technology and ADS simulation software. The variable capacitor is implemented by connecting the heterojunction bipolar transistor (HBT) and the metal-oxide-semiconductor field-effect transistor (MOSFET) in parallel.Thus, this oscillator shows a wide tuning range. The adjustable frequency range is from16.5 GHz to 19.85 GHz. In the second part of thesis, 50 GHz and 75 GHz subharmonic injection-locked oscillators are designed and manufactured in BiFET and GaAs pHEMT technologies. The measured oscillator shows low phase noise, wide-band locking range, low power consumption and high output power. Finally, this thesis explores how to use voltage-controlled oscillator to realize the modulation for the frequency-shift keying (FSK) signals and to demonstrate the demodulating the FSK signals using the injection-locked oscillator.
關鍵字(中) ★ 微波/毫米波頻段
★ 注入式鎖態振盪器
★ 寬頻可調頻率範圍
★ 頻移鍵控信號
關鍵字(英) ★ Microwave/Millimeter-wave
★ Injection-locked oscillators
★ Wide tuning range
★ FSK
論文目次 摘要 ....................................................................................................................................... I
Abstract ................................................................................................................................. II
誌謝 ..................................................................................................................................... III
目錄 ..................................................................................................................................... IV
圖目錄 ................................................................................................................................. VI
表目錄 ................................................................................................................................. IX
第一章 緒論 ......................................................................................................................... 1
1.1研究動機及背景 ..................................................................................................... 1
1.2相關研究與發展 ..................................................................................................... 1
1.3論文架構 ................................................................................................................. 2
第二章 K/Ka-band寬頻壓控振盪器之設計 ....................................................................... 3
2.1壓控振盪器電路簡介 ............................................................................................. 3
2.1.1振盪器原理 .................................................................................................. 3
2.1.2交叉耦合對振盪器架構 .............................................................................. 7
2.1.3振盪器的重要參數 ...................................................................................... 9
2.2可變電容器之設計與模擬 ................................................................................... 12
2.3 0.35 μm SiGe BiCMOS寬頻壓控振盪器電路實作 ............................................ 16
2.3.1介紹 ............................................................................................................ 16
2.3.2模擬與量測結果 ........................................................................................ 17
2.4 量測結果與討論 ................................................................................................... 23
第三章 毫米波頻段次諧波注入式鎖態振盪器 ............................................................... 25
3.1簡介 ....................................................................................................................... 25
3.1.1注入鎖態之原理 ........................................................................................ 25
3.1.2鎖態範圍 .................................................................................................... 26
3.1.3注入式振盪器之相位雜訊分析 ................................................................ 29
3.2 雙閘極元件次諧波注入式鎖態振盪器之電路實作 ......................................... 30
3.2.1介紹 ............................................................................................................ 30
3.2.2模擬與量測結果 ........................................................................................ 32
V
3.3 0.15 μm GaAs pHEMT次諧波注入式鎖態振盪器之電路實作 ........................ 38
3.3.1介紹 ............................................................................................................ 38
3.3.2模擬與量測結果 ........................................................................................ 40
3.4 量測結果與討論 ................................................................................................... 46
第四章 頻移鍵控信號發射器 ........................................................................................... 48
4.1 簡介 ....................................................................................................................... 48
4.1.1頻移鍵控原理 ............................................................................................ 48
4.1.2頻移鍵控解調變原理 ................................................................................ 51
4.1.3頻移鍵控解調電路模擬 ............................................................................ 53
4.2 頻移鍵控信號發射器電路實作 ........................................................................... 55
4.2.1介紹 ............................................................................................................ 55
4.2.2實作電路量測結果 .................................................................................... 56
4.3 量測結果與討論 ................................................................................................... 57
第五章 結論 ....................................................................................................................... 58
參考文獻 ............................................................................................................................. 59
附錄A 頻移鍵控信號高數位傳輸率收發機使用注入式鎖態除頻器 .......................... 62
A.1電路研究動機 ...................................................................................................... 62
A.2電路架構簡介 ...................................................................................................... 63
A.3模擬與量測結果 .................................................................................................. 67
A.4量測結果與討論 .................................................................................................. 72
參考文獻 [1] 高矅煌,射頻鎖相迴路IC設計,初版,滄海書局,臺中市,民國九十四年。
[2] David M. Pozar著,微波工程,郭仁財譯,高立書局,臺北縣,民國九十五年。
[3] 袁杰,無線電高頻電路,初版,全華書局,臺北市,民國九十年。
[4] Guillermo Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd Edition, Prentice Hall Inc, 1997.
[5] I. Bahl and P. Bhartia, Microwave Solid-State Circuit Design, Wiley Interscience, N.Y., 1988.
[6] Ali Hajimiri, Thomas H. Lee, The Design of Low Noise Oscillators, 5th Edition Kluwer Academic Publishers, 2002.
[7] B. Razavi, “RF Microelectronics”, Chap. 2, Prentice Hall PTR, NJ, 1998.
[8] T. G. Yu, S. I. Cho, and H. G. Jeong, “A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive generation”, Journal of Semiconductor Technology and Science, vol. 6, no. 4, pp.281-285, Dec. 2006.
[9] Ka Chun Kwok; Long, J.R., "A 23-to-29 GHz Transconductor-Tuned VCO MIC in 0.13 μm CMOS," Solid-State Circuits, IEEE Journal of, vol.42, no.12, pp.2878-2886, Dec. 2007.
[10] Neric Fong; Jonghae Kim; Plouchart, J.-O.; Zamdmer, N.; Duixian Liu; Wagner, L.; Plett, C.; Tarr, G., "A low-voltage 40-GHz complementary VCO with 15% frequency tuning range in SOI CMOS technology," Solid-State Circuits, IEEE Journal of , vol.39, no.5, pp. 841-846, May 2004.
[11] Hao Li; Rein, H.-M., "Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology," Solid-State Circuits, IEEE Journal of , vol.38, no.2, pp. 184-191, Feb 2003.
[12] A. W. L. Ng and H. C. Luong, “A 1-V 17 GHz 5 mW quadrature CMOS VCO based on transformer coupling,” IEEE ISSCC Dig. Tech. Papers, pp. 711-712, Feb. 2006.
[13] B. Jung and R. Harjani, “High frequency LC VCO design using capacitive degeneration,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp.2359-2370, Dec. 2004.
[14] D. K. Shaeffer and S. Kudszus, “Performance-optimized microstrip coupled VCOs for 40-GHz and 43-GHz OC-768 optical transmission, ” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1130-1138, Jul. 2003.
[15] C. R. C. De Ranter and M. S. J. Steyaert, “A 0.25 m CMOS 17 GHz VCO,” IEEE
60
ISSCC Dig. Tech. Papers, Feb. 2001, pp. 370–371.
[16] C. Cao and K. K. O, “Millimeter-wave voltage-controlled oscillators in 0.13- m CMOS technology,” IEEE J. Solid-State Circuits, vol. 41,no. 6, pp. 1297-1304, Jun, 2006.
[17] N. Fong, J. Kim, J.-O. Plouchart, N. Zamdmer, D. Liu, L. Wagner, C. Plett, and G. Tarr, “A low voltage 40-GHz complementary VCO with 15% frequency tuning range in SOI CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 841-846, May 2004.
[18] R. Adler, “A study of locking phenomena in oscillators,” Proc. I.R.E. and Waves and Electrons, vol. 46, pp. 351-357, June 1946.
[19] 黃凡修, “利用高階除數操作之注入式鎖態振盪器於微波/毫米波訊號源應用Injection-Locked Oscillators with High-Order-Division Operation for Microwave/Millimeter-wave Signal Generation,” 國立中央大學電機工程研究所博士論文, 民國97年九月。
[20] X. Zhang, X. Zhou, B. Aliener, and A. S. Daryoush, “A Study of Subharmonic Injection Locking for Local Oscillator”, IEEE Microwave and Guided Wave Letters, vol. 2, no. 3, pp.97-99, Mar. 1992.
[21] X. Zhang, X. Zhou, and S. Daryoush, “A Theoretical and Experimental Study of the Noise Behavior of Subharmonically Injection Locked Local Oscillators”, IEEE Trans. on Microwave Theory and Techniques, vol. 40, no. 5, pp.895-902, May. 1992.
[22] H. C. Chang, “Phase Noise in Self-Injection-Locked Oscillators-Theory and Experiment”, IEEE Trans. on Microwave Theory and Techniques, vol. 51, no. 9, pp.1994-1998, Sep. 2003.
[23] Y. Chen and Z. Chen, “A Dual-Gate FET Subharmonic Injection-Locked Self-Oscillating Active Integrated Antenna for RF Transmission”, IEEE Microwave and Wireless Components Letters, vol. 13, no. 6, pp.199-201, Jun. 2003.
[24] Kamogawa, K. Tokumitsu, T. Toyoda, I. , “A 20-GHz-band subharmonically injection-locked oscillator MMIC with wide locking range” , IEEE on Microwave and Guided Wave Letters, vol. 7, no. 8, pp.233-235, Aug. 1997.
[25] Hideki Kamitsuna, Minoru Ida, and Kenji Kurishima, “A60-GHz-band optical injection-locked oscillator using a top/back-illumina InP/InGaAs HPT,” IEEE Indium Phosphide & Related Materials, pp. 538 -541, May 2007.
[26] Nortel Networks, “Injection-Locked Oscillator as Frequency Multiplier for
61
Millimeter-wave Applications,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 245-248, Oct. 1999.
[27] Sai-Wang Tam, Eran Socher, Alden Wong, Yu Wang, Lan Duy Vu and Mau-Chung Frank Chang, “Simultaneous Sub-harmonic Injection-Locked mm-Wave Frequency Generators for Multi-band Communications in CMOS,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 131-134, April 2008.
[28] Shuya Kishimoto, Kenichi Maruhashi, Masaharu Ito, Takao Morimoto, Yasuhiro Hamada, and Keiichi Ohata, “A 60-GHz-band subharmonically injection locked VCO MMIC operating over wide temperature range,” IEEE Microwave Symposium Digest, pp.1689-1692, June 2005.
[29] 藍國桐,通訊原理與應用,初版,全華書局,臺北市,民國八十九年。
[30] 張傳生,數位通訊原理,初版,儒林書局,臺北市,民國八十一年。
[31] Chao-Shiun Wang, Kun-Da Chu, and Chorng-Kuang Wang, “A 0.13μm CMOS 2.5Gb/s FSK demodulator using injection-locked technique,” IEEE Radio Frequency Integrated Circuits Symposium, pp.563-566 Jun. 2009.
[32] J. M. López-Villegas, “FSK Coherent Demodulation Using Second-Harmonic Injection Locked Oscillator,” IEEE Microwave and Wireless Components Letters, pp.578-580, Sept. 2009.
[33] B. Razavi, “A Study of Injeciton Locking and Pulling in Oscillators”, IEEE
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2010-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明