博碩士論文 975201061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.219.22.169
姓名 鄭安棣(An-li Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 分子電晶體之穿隧電流與熱電效應
(Tunneling current and thermoelectric effects in a single molecular transistor with strong electron phonon interactions)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 串接耦合量子點之熱電特性★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文利用安德生模型在電子與聲子交互作用力下,描述單分子電晶體的結構,並理論性地探討其穿隧電流、電導、熱導、熱電係數以及熱電優值。由於很強的電子與聲子交互作用力,在低溫區域可以很清楚地看到穿隧電流以及熱電係數會藉由聲子協助穿隧產生新的峰值。然而當溫度增加時,聲子協助穿隧的效應逐漸變得不明顯。此外在不考慮電子與聲子交互作用力時,庫倫阻斷區域的熱電優值可以得到一個令人期待的值,一旦考慮電子與聲子交互作用力,熱電優值則會被抑制的很嚴重,以至於很難達到Carnot效應,這歸咎於多重聲子輔助穿隧造成熱導值的提升。我們可以藉由量測熱電係數來觀察高階聲子協助穿隧的過程。
摘要(英) This thesis theoretically studies the tunneling current, electrical conductance, thermal power, electron thermal conductance and figure of merit of a single molecular quantum dot by using the Anderson model with strong coupling between molecular vibration modes and localized electron [or “electron-phonon interactions ”(EPIs)]. Due to strong EPIs, the phonon side bands of tunneling current and thermal power are observed at low temperature, but readily washed out with increasing temperature. In the absence of EPIs, the figure of merit (ZT) of molecular QD junctions exhibits an impressive value in the Coulomb blockade regime .The seriously reduction of ZT is observed in the presence of strong EPIs. The suppression of ZT is mainly attributed to the considerable enhancement of electron thermal conductance due to the involve of multiple phonon assisted tunneling processes. We also find that Carnot efficiency vanishes in the strong EPIs. We can resolve the high-order phonon assisted tunneling processes by using measurement of thermal power.
關鍵字(中) ★ 分子電晶體
★ 熱電效應
關鍵字(英) ★ thermoelectric effects
★ molecular transistor
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 導論 1
1-1電晶體簡介與發展近況 1
1-1-1電晶體簡介 1
1-1-2 分子電晶體簡介 1
1-2熱電材料 3
1-2-1 熱電材料簡介 3
1-2-2 熱電優值ZT 5
1-3 論文架構 6
第二章分子電晶體與熱電元件之操作原理 8
2-1 系統模型 8
2-2 穿隧電流與熱流方程式 10
2-3 電子佔據率與格林函數 11
2-4 線性操作的熱電元件與參數 14
第三章 分子電晶體的穿隧電流 16
3-1 定性分析 16
3-2系統偏壓在不同EPIs對穿隧電流影響 18
3-2-1系統偏壓在不同溫度對穿隧電流影響 21
3-3閘極偏壓在不同EPIs對穿隧電流影響 24
3-4 小結 26
第四章 熱電效應的模擬 27
4-1 前言 27
4-2 內階庫倫交互作用力對ZT的影響 28
4-3 電子與聲子交互作用力對ZT的影響 30
4-4 量子點能階偏移對ZT的影響 33
4-5 穿隧率對ZT的影響 35
4-6 調控閘極電位對ZT的影響 38
第五章 結論 42
參考文獻 43
參考文獻 [1.1] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, ” Large on-off ratios and negative differential resistance in a molecular electronic device” ,Science 286, 1550 (1999).
[1.2] J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. V. Löhneysen,“ Driving current through single organic molecules”, Loheysen, Phys. Rev. Lett. 88, 176804 (2002).
[1.3] S.Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. Bredas, N. Stuhr-Hansen, P. Hedegard, and T. Bjornholm “Single-electron transistor of a single organic molecule with access to several redox states”,Nature 425, 68 (2003).
[1.4] A. Mitra, I. Aleiner, and A. J. Millis,“Phonon effects in molecular transistors: Quantal and classical treatment”, Phys. Rev. B 69, 245302 (2004).
[1.5] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisators and P. L. McEuen , “Nanomechanical oscillations in a single- transistor”, Nature. 407, 57 (2000).
[1.6] N. B. Zhitenev, H. Meng, and Z. Bao, “ Conductance of small molecular junctions” Phys. Rev. Lett. 88, 226801 (2002).
[1.7] A. J. Minnich M. S. Dresselhaus, Z. F. Ren and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”,Energy Environ. Sci. 2 , 466 (2009).
[1.8] A. Majumdar ,“Thermoelectricity in semiconductor nanostructures”, Science 303, 777 (2004).
[1.9] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial and T. Caillat, “Recent developments in thermoelectric materials”, International Materials Reviews, 48, 45 (2003).
[1.10] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature 413, 597 (2001).
[1. 11] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Health,“Silicon nanowires as efficient thermoelectric materials”, Nature, 451, 168 (2008).
[1.12] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge ,“Quantum dot superlattice thermoelectric materials and devices ”, Science 297, 2229 (2002).
[1.13] Y. M. Lin and M. S. Dresselhaus ,“Thermoelectric properties of superlattice nanowires ”, Phys. Rev. B, 68, 075304 (2003).
[1.14] P. Murphy, S. Mukerjee, and J. Moore,“Optimal thermoelectric figure of merit of a molecular junction”, Phys. Rev. B 78, 161406 (2008).
[1.15] S. Sapmaz, P. Jarillo-Herrero, ya. M. Blanter, C. Dekker, H. S. J. van der Zant ,“Tunneling in suspended carbon nanotubes assisted by longitudinal phonons ”,Phys. Rev. Lett. 96, 026801 (2006).
[1.16] A. P. Jauho, N. S. Wingreen and Y. Meir ,“ Time-dependent quantum transport in a resonant tunnel junction coupled to a nanomechanical oscillator”, Phys. Rev. B, 50, 5528 (1994).
[1.17] D. M. T. Kuo and Y. C. Chang,“ Tunneling current through a quantum dot with strong electron-phonon interaction ”, Phys. Rev. B, 66, 085311 (2002).
[1.18] M. Galperin, A. Nitzan and M. A. Ratner,“ Heat conduction in molecular transport junctions ”,Phys. Rev. B, 75, 155312 (2007).
[1.19] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang,J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song,M. S. Dresselhaus, G. Chen and Z. Ren “ Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy”, Appl. Phys. Lett. 93, 193121 (2008).
[1.20] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould,D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen and Z. Ren“ Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys ”, Nano Lett. 8, 4670 (2008).
[1.21] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, “ High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys ”, Science, 320, 634 (2008).
[2.1] D. M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current through a single quantum dot”, Physica E, 27, 355 (2005).
[2.2] N. B. Zhitenev, H. Meng, and Z. Bao, ” Conductance of Small Molecular Junctions” Phys. Rev. Lett. 88, 226801 (2002).
[2.3] D. M. T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy”, Phys. Rev. Lett. 99, 086803 (2007).
[2.4] D. M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000).
[2.5] D. M. T. Kuo and Y. C. Chang, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels”, Phys. Rev. B, 77, 245412 (2000).
[2.6] G. D. Mahan, Many Particle Physics, 3rd ed. (Plenum, New York, 2000 ).
[2.7] D. M. T. Kuo and Y. C. Chang , “Tunneling current through a quantum dot with strong electron-phonon interaction”, Phys. Rev. B,66,085311 (2002).
[2.8] J.Liu, J.Song, Q. F. Song, and X. C. Xie, “Electric-current-induced heat generation in a strongly interacting quantum dot in the Coulomb blockade regime”, Phys. Rev. B, 79, 161309 (2009).
[2.9] K. Flensberg, “Tunneling broadening of vibrational sidebands in molecular transistors”, Phys. Rev. B , 68, 205323 (2003).
[2.10] B. Dong and X. L. lei, “Effect of the Kondo correlation on the thermopower in a quantum dot ”, J. Phys. Cindens. Matters 14, 11747 (2002).
[2.11] D. Segal, “Single Mode Heat Rectifier: Controlling Energy Flow Between Electronic Conductors”, Phys. Rev. Lett. 100, 105901, (2009).
[3.1] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisators and P. L. McEuen , “Nanomechanical oscillations in a single- transistor”, Nature. 407, 57 (2000).
[4.1] D. M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling
current through a single quantum dot”, Physica E 27, 355 (2005).
[4.2] D. M. T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
[4.3] G. Mahan, B. Sales and J. Sharp, “Thermoelectric materials: New approaches to an old problem”, Physics Today 50, 42 (1997).
[4.4] D. M. T. Kuo ,“Thermoelectric properties of multiple quantum dots junction system”, Jap. J. Appl. Phys. 48, 125005 (2009).
[4.5] P. Murphy, S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of a molecular junction”, Phys. Rev. B. 78, 161406 (2008).
指導教授 郭明庭(David. M. T. Kuo) 審核日期 2010-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明