博碩士論文 975201070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.238.199.4
姓名 黃柏融(Bo-Rung Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器
(InAs Photodiode on Semi-Insulating GaAs Substrate with Zn-Diffusion Guard-Ring for Room Temperature High-Speed and Low Dark Current Performance)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器
★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射
★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) InAs這種材料由於本身擁有超快的電子遷移率且截止頻率可以到達3.4μm,因此非常適合應用於遠紅外線波長的超高速光檢測器。然而,之前的應用都是製作於導電的InAs基板上,這樣會產生一個巨大的寄生電容,而且會限制光檢測器的速度表現。此外,在室溫操作下會有嚴重的表面態和暗電流產生。因此,在這篇論文中我們展示了一個成長在半絕緣基板(GaAs)上的InAs高速光檢測器,而且利用鋅擴散的方式來降低漏電流。在室溫和低偏壓(-0.2V)操作下,這個新穎的光檢測器3-dB頻寬可以達到20GHz,且擁有合理的暗電流密度(11A/cm2)。
摘要(英) InAs is an attractive material system for fabricating high-speed photodiodes in far-infrared wavelengths due to its extremely high electron mobility and a cut-off frequency as long as around 3.4μm. However, the reported InAs PD is usually grown on the conductive InAs substrate, which should result in a significant parasitic capacitance and further limit the speed performance of PD. In addition, the serious surface state and huge leakage current of InAs based PDs at RT operation is usually observed. In this paper, we demonstrated a novel high-speed InAs photodiode (PD), which was grown on semi-insulating (S.I.) GaAs substrate with the Zn-diffusion guard ring to suppress the leakage current. Such novel PD exhibits a 3-dB optical-to-electrical (O-E) bandwidth as wide as 20GHz, a reasonable dark current density (11A/cm2), under a small reverse bias voltage (-0.2V) and RT operation.
關鍵字(中) ★ InAs光檢測器
★ 鋅擴散
關鍵字(英) ★ InAs photodiode
★ Zinc diffusion
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 vii
表目錄 xi
第一章 序論 1
§1.1 簡介 1
§1.2 量子串接式雷射之發展與應用 3
§1.3 窄能隙半導體光檢測器 7
§1.4 各種降低漏電流的方法比較 11
§1.5 論文動機與架構 18
第二章 InAs光檢測器原理 20
§2.1 傳統P-I-N光檢測器工作原理 20
§2.2 InAs材料介紹 22
§2.3 InAs光檢測器之磊晶層設計 25
第三章 InAs光檢測器之製程 32
§3.1 InAs光檢測器之鋅擴散製程 32
§3.2 InAs光檢測器之Gate controlled製程 43
第四章 鋅擴散InAs光檢測器之量測與結果討論 48
§4.1 I-V 量測結果 48
§4.2 Heterodyne-Beating 量測系統之架設 51
§4.3 頻寬量測結果 52
第五章 結論與未來研究方向 59
參考文獻 60
附錄1 62
附錄2 ...........................................66
圖目錄
圖1-1 (a)(b)能帶躍遷方式圖................................4
圖1-2-1各時期所研究的代表材料............................7
圖1-2-2紅外線檢測器其波長對光譜靈敏度的曲線圖............7
圖1-3晶格常數對能隙圖....................................8
圖1-4-1 300K下泡硫化銨I-V圖.............................12
圖1-4-2 77K下泡硫化銨I-V圖.............................12
圖1-4-3 (a) Unpassivated I-V圖 (b) Passivated I-V圖........13
圖1-4-4磊晶表...........................................14
圖1-4-5元件側視圖.......................................14
圖1-4-6 Gate controlled I-V圖............................15
圖1-4-7鋅擴散區域.......................................16
圖1-4-8溫度和時間對漏電流的影響.........................16
圖1-4-9擴散時間對深度圖.................................17
圖2-1傳統P-I-N 光檢測器結構圖...........................20
圖2-2-1 InAs的能帶圖與載子濃度..........................24
圖2-2-2 電場和電子飄移速度關係圖(77K) ...................24
圖2-3-1 單載子傳輸光檢測器與傳統P-I-N光檢測器空間電荷屏蔽效應.....................................................26
圖2-3-2 元件橫截面圖.....................................28
圖2-3-3 (a) AA’方向在-0.8V之能帶和電場分布圖 (b) BB’方向之電場分布圖............................................28、29
圖2-3-4 AA’方向在-3V之能帶和電場分布圖. ..................29
圖2-3-5 InAs的費米能階...................................30
圖2-3-6 InP的費米能階....................................30
圖3-1-1 中心蝕刻5000Å...................................33
圖 3-1-2 以氫氧焰封管示意圖...............................34
圖 3-1-3 Zn擴散區域.......................................35
圖3-1-4 陽極金屬.........................................36
圖3-1-5 主動區內溝槽蝕刻.................................37
圖 3-1-6 主動區蝕刻.......................................38
圖 3-1-7 陰極金屬.........................................39
圖 3-1-8 Isolation........................................40
圖 3-1-9 平坦化製程.......................................41
圖3-1-10 金屬墊..........................................42
圖3-1-11 成品俯視圖......................................42
圖3-2-1 陽極金屬.........................................43
圖3-2-2 主動區蝕刻.......................................43
圖3-2-3 陰極金屬.........................................44
圖3-2-4 元件區蝕刻.......................................44
圖3-2-5 保護層...........................................45
圖3-2-6 側壁電極.........................................45
圖3-2-7 平坦化製作.......................................46
圖3-2-8 金屬墊製作.......................................46
圖3-2-9 Gate controlled layout圖.........................47
圖4-1-1 Si3N4保護層I-V圖.................................48
圖4-1-2 硫化銨保護層I-V圖...............................49
圖4-1-3 硫化鋅保護層I-V圖...............................49
圖4-1-4 Gate Controlled I-V圖............................50
圖4-1-5 鋅擴散I-V比較圖.................................50
圖4-2 Heterodyne-Beating system 量測架設示意圖...........51
圖4-3-1 (a)(b)Device A和B在不同偏壓下之頻率響應之比較...53
圖4-3-2 InAs光檢測器之二埠等效電路模型...................54
圖4-3-3 (A-F)不同偏壓下的模擬和量測結果..............55、56
圖4-3-4等效電路模擬和Matlab模擬的內部載子傳輸時間.......57
圖4-3-5載子分布圖.......................................57
圖4-3-6 (a-d)元件A和B之量測與模擬結果...................58
表目錄
表1-1紅外光譜區..........................................2
表1-2各材料的基本物理特性................................9
表1-3擴散時間對深度表...................................17
表2-1 InAs在室溫下的基本特性.............................23
表2-2 磊晶結構層.........................................31
表3-1 HDP Recipe.........................................38
表4-1 在等效電路中模擬過程所使用的元素之數值與物理意義...54
參考文獻 參考文獻
[1] Federico Capasso, Raffaele Colombelli, Roberto Paiella, Claire Gmachl, Alessandro Tredicucci, Deborah L. Sivco and Alfredy. Cho, “Far-Infrared and Ultra-High-Speed Quantum-Cascade Lasers,” Optics and Photon. News, vol. 12, Issue 5, pp. 40-46, 2001.
[2] Antoni Rogalski, Krzysztof Adamiec, Jaroslaw Rutkowski, “Narrow-gap semiconductor photodiodes,” chapter 2, SPIE The International Society for Optical Engineering, 2000.
[3] Johan Rothman1, Eric de Borniol, Sylvette Bisotto, Laurent Mollard, Fabrice Guellec, Frederic Pistone, Solène Courtas, Solène Courtas, “HgCdTe APD- Focal Plane Array development at DEFIR for low flux and photon-counting applications,” Detectors for Astronomy Workshop 2009.
[4] J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, J. Campbell, “The HgCdTe Electron Avalanche Photodiode,” IEEE LEOS NEWSLETTER, Oct. 2006.
[5] X.Y. Gong, T. Yamaguchi, H. Kan, T. Makino, K. Ohshimo, M. Aoyama, M. Kumagawa, N.L. Rowell, R. Rinfret, “Sulphur passivation of InAs(Sb),” Appl. Surface Sci., vol. 113-114, pp. 388-392, Apr. 1997.
[6] S. Mallick, K. Banerjee, S. Ghosh, J. B. Rodriguez, and S. Krishna, “Midwavelength Infrared Avalanche Photodiode Using InAs–GaSb Strain Layer Superlattice,” IEEE Photon. Technol. Lett., vol. 19, no. 22, Nov. 2007.
[7] R.-M. Lin, S.-F. Tang, Si-Chen Lee, C.-H. Kuan, G.-S. Chen, T.-P. Sun, and J.-C. Wu, “Room Temperature Unpassivated InAs p-i-n Photodetectors Grown by Molecular Beam Epitaxy,” IEEE Trans. Electron Device, vol. 44, pp. 209-213, Feb. 1997.
[8] A. Säynätjoki, P. Kostamo, J. Sormunen, J. Riikonen, A. Lankinen, H. Lipsanen, H. Andersson, K. Banzuzi, S. Nenonen, H. Sipilä, S. Vaijärvi and D. Lumb, “InAs pixel matrix detectors fabricated by diffusion of Zn in a metal-organic vapour-phase epitaxy reactor,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 563, Issue 1, pp. 24-26, Jul. 2006.
[9] F. Capasso et. al., “Quantum Cascade Lasers: Ultrahigh-Speed Operation: Optical Wireless Communication, Narrow Linewidth, and Far-Infrared Emission,” IEEE J. Quantum Electron., vol. 38, pp. 511-532, Jun. 2002.
[10] H.-K. Choi, “Long-Wavelength Infrared Semiconductor Laser,” chapter 3, John Wiley & Sons, Hoboken, New Jersey, 2004.
[11] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006.
[12] Y.-S. Wu, and J.-W. Shi, “Dynamic Analysis of High-Power and High-Speed Near-Ballistic Unitraveling Carrier Photodiodes at W-Band,” IEEE Photon. Technol. Lett., vol. 20, pp. 1160-1162, Jul. 2008.
[13] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55µm Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, Apr. 2006.
[14] A. R. J. Marshall, C. H. Tan, John P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs Photodiodes with reduced surface leakage current,” Proc. of SPIE Optical Materials in Defence Systems Technol. IV, vol. 6740, pp. 67400H-1-9, 2007.
[15] http://www.ioffe.ru/SVA/NSM/Semicond/InAs/index.html
[16] James R. Chelikowsky and Marvin L. Cohen, “Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B, vol. 14, pp. 556-582, 1976.
[17] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709-727, Jul./Aug. 2004.
[18] Jin-Wei Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Cheng-Yi Liu, Cheng Yu Chen, “Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode With a Flip-Chip Bonding Structure,” IEEE J. Quantum Electron., vol. 46, no. 1, Jan. 2010.
[19] M. Levinshtein, S. Rumyantsev and M. Shur, Handbook Series on Semiconductor Parameters vol. 1, pp. 147-168, World Scientific, London, Nov. 1996.
[20] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, Chapters 11 and 13, 1981.
指導教授 許晉瑋(J.-W. Shi) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明