博碩士論文 975201075 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.163.213.149
姓名 呂宗翰(Zong-Han Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 智慧型控制雙饋式感應風力發電系統之研製
(Design and Implementation of DFIG Based Wind Generator System Using Intelligent Control)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 無感測器直流變頻壓縮機驅動系統之研製
★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統★ 多重地網系統之人身安全驗證與模擬
★ 利用智慧型控制與主動式直軸訊號注入法之孤島偵測研究★ 具主動功因調節之LED驅動器研製
★ 應用於輕型電動車之智慧型錯誤容忍控制六相永磁同步馬達驅動系統★ 智慧型控制數位化鋰錳電池充電器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以比例積分微分型類神經網路與機率型模糊類神經網路智慧型控制器實現獨立型雙饋式感應發電系統之控制。此系統可應用於獨立供電系統,或當市電發生故障時作為緊急發電系統之用途。此系統在次同步、同步以及超同步的情況以及負載變動下皆能夠產生穩定之三相220V的電壓以及60Hz的頻率。本論文利用轉子側轉換器磁場導向控制,可使雙饋式感應發電機在轉速變動下皆能夠產生固定的電壓大小和頻率;利用定子側轉換器磁場導向控制,以維持直流鏈電壓的穩定。論文中,亦詳細推導比例積分微分型類神經網路與機率型模糊類神經網路控制器之網路架構與線上學習法則,並應用於雙饋式感應發電系統之轉子側及定子側轉換器,使其達到更好的暫態響應與控制效能。另一方面,本論文亦採用PSIM軟體模擬雙饋式感應發電系統之可行性,最後透過實驗結果來驗證所提控制方法之有效性。
摘要(英) An intelligent control doubly-fed induction generator (DFIG) system using proportional-integral-derivative neural network (PIDNN) and probabilistic fuzzy neural network (PFNN) is proposed in this study. For stand-alone applications, this system can be applied as a stand-alone power supply system or as an emergency power system when the electricity grid fails for all sub-synchronous, synchronous and super-synchronous conditions. The rotor side converter is controlled using field-oriented control to produce three-phase stator voltages with constant magnitude and frequency at different rotor speeds. Moreover, the stator side converter, which is also controlled using field-oriented control, is implemented to maintain the magnitude of the DC-link voltage. Furthermore, the intelligent PIDNN controller and PFNN controller is proposed for both the rotor and stator side converters to improve the transient and steady-state responses of the DFIG system for different operating conditions. Both the network structure and on-line learning algorithm are introduced in detail. In addition, some simulated results are given to verify the design of the DFIG system. Finally, the feasibility of the proposed control scheme is verified through experimentation.
關鍵字(中) ★ 雙饋式感應發電機
★ 磁場導向控制
關鍵字(英) ★ Doubly-fed induction generator
★ FOC
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 XVII
符號說明 XVIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 文獻回顧 7
1.4 論文大綱 11
第二章 雙饋式感應風力發電系統分析 13
2.1 簡介 13
2.2 雙饋式感應風力發電系統介紹 13
2.3 雙饋式感應電機模型推導 16
2.4 轉子側轉換器控制策略 20
2.5 定子側轉換器控制策略 22
第三章 應用PSIM軟體模擬雙饋式感應發電系統 28
3.1 簡介 28
3.2 轉子側轉換器模擬分析 28
3.3 定子側轉換器模擬分析 36
3.4 雙饋式感應發電系統模擬分析 41
第四章 雙饋式感應發電系統之實作 48
4.1 簡介 48
4.2 硬體電路 49
4.2.1 高性能伺服控制卡MRC-6810 49
4.2.2 電壓感測電路 50
4.2.3 電流感測電路 51
4.2.4 智慧型功率模組與驅動電路 52
4.2.5 輔助電源電路 54
4.2.6 三相電流控制電路 55
4.3 軟體架構 56
4.4 實作結果與討論 58
第五章 應用比例積分微分型類神經網路控制器實現雙饋式感應發電
系統 70
5.1 簡介 70
5.2 比例積分微分型類神經網路架構 70
5.3 比例積分微分型類神經網路線上學習法則 73
5.4 軟體架構 75
5.5 實作結果與討論 76
第六章 應用機率型模糊類神經網路控制器實現雙饋式感應發電系統 88
6.1 簡介 88
6.2 機率型模糊類神經網路架構 88
6.3 機率型模糊類神經網路線上學習法則 92
6.4 軟體架構 94
6.5 實作結果與討論 96
第七章 結論與未來研究方向 108
參考文獻 110
作者簡歷 114
參考文獻 [1]‘World Wind Energy Association’, http://www.wwindea.org
[2]‘BTM Consult ApS’, http://www.btm.dk
[3]經濟部能源局,2010年能源產業技術白皮書。
[4]Blaabjerg F., Teodorescu R., Liserre M., Timbus A. V.: ‘Overview of control and grid synchronization for distributed power generation systems’ , IEEE Trans. Ind Electron., 2006, 53, (5), pp. 1398-1409
[5]Lin F. J., Teng L. T., Shieh P. H., Li Y. F.: ‘Intelligent controlled-wind-turbine emulator and induction-generator system using RBFN’ , IEE Proc.-Electr. Power Appl., 2006, 153, (4), pp. 608-618
[6]Lin F. J., Teng L. T., Lin J. W., Chen S. Y.: ‘Recurrent FL-Based Fuzzy Neural Network Controlled Induction Generator System Using Improved Particle Swarm Optimization’ , IEEE Trans. Industrial Electronics., 2009, 56, (5), pp. 1557-1577
[7]Pena R., Clare J. C., Asher G. M.: ‘Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation’ , IEE Proc.-Electr. Power Appl., 1996, 143, (3), pp. 231-241
[8]Muller S., Deicke M., De Doncker R. W.: ‘Doubly-fed induction generator systems for wind turbines’ , IEEE IAS Magazine., 2002, pp. 26-23
[9]Pena R., Clare J. C., Asher G. M.: ‘A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine’ , IEE Proc.-Electr. Power Appl., 1996, 143, (5), pp. 380-387
[10]Forchetti D., Garcia G., Valla M. I.: ‘Vector control strategy for a doubly-fed stand-alone induction generator’ , in Proc. 28th IEEE IECON., 2002, 2, pp. 991-995
[11]Jain A. K., Ranganathan V. T.: ‘Wound rotor induction generator with sensorless control and integrated active filter for feeding nonlinear loads in a stand-alone grid’ , IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 218-228
[12]Iwanski G., Koczara W.,: ‘DFIG-based power generation system with UPS function for variable-speed applications’ , IEEE Trans. Ind. Electron., 2008, 55, (8) pp. 3047-3054
[13]Crowe J.: PID Control: New Identification and Design Methods. London, U.K.: Springer-Verlag, 2005.
[14]Yamamoto T., Takao K., Yamada T.: ‘Design of a data-driven PID controller’ , IEEE Trans. Contr. Syst. Technol., 2009, 17, (1), pp. 29-39
[15]Tan K. K., Huang S., and Ferdous R.: ‘Robust self-tuning PID controller for nonlinear systems’, J. Process Contr., 2002, 12, (7), pp. 753-761
[16]Parvez S., Gao Z.: ‘A wavelet-based multiresolution PID controller’ , IEEE Trans. Ind. Appl., 2005, 41, (2), pp. 537-543
[17]Parra-Vega V., Arimoto S., Liu Y. H., Hirzinger G., Akella P.: ‘Dynamic sliding PID control for tracking of robot manipulators: theory and experiments’ , IEEE Trans. Robot. Automat., 2003, 19, (6), pp. 967-976
[18]Ren T. J., Chen T. C.: ‘Motion control for a two-wheeled vehicle using a self-tuning PID controller’ , Control Eng. Pract., 2008, 16, (3), pp. 365-375
[19]Cong S., Liang Y.: ‘PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems’ , IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 3872-3879
[20]Lin F. J., Hwang W. J., Wai R. J.: ‘A supervisory fuzzy neural network control system for tracking periodic inputs’, IEEE Trans. Fuzzy Systems, 1999, 7, (1), pp. 41-52
[21]Wang L. X.: ‘A course in fuzzy systems and control’ (Prentice-Hall, NJ, 1997)
[22]Park Y. M., Choi M. S., Lee K. Y.: ‘An optimal tracking neuro-controller for nonlinear dynamic systems’, IEEE Trans. Neural Netw., 1996, 7, (5), pp. 1099-1110
[23]Wang L. X.: ‘Adaptive fuzzy systems and control: design and stability analysis’ (Prentice-Hall, Englewood Cliffs, NJ, 1994)
[24]Yu W., Li X.: ‘Fuzzy identification using fuzzy neural networks with stable learning algorithms’, IEEE Trans. Fuzzy Systems, 2004, 12, (3), pp. 411-420
[25]Lin F. J., Shieh H. J., Huang P. K., Teng L. T.: ‘Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator’, IEEE Trans. Ultrason. Ferroelectr., Freq. Control, 2006, 53, (9), pp. 1649-1661
[26]Gao Y., Er M. J.: ‘An intelligent adaptive control scheme for postsurgical blood pressure regulation’, IEEE Trans. Neural Netw., 2005, 16, (2), pp. 475-483
[27]Lin F. J., Huang P. K., Wang C. C., Teng L.T.: ‘An induction generator system using fuzzy modeling and recurrent fuzzy neural network’, IEEE Trans. Power Electron., 2007, 22, (1), pp. 260-271
[28]Specht D. F.: ‘Probabilistic neural network’, 1990, Neural Netw., 3, (1), pp. 190-118
[29]Tripathy M., Maheshwari R. P., Verma H. K.: ‘Power transformer differential protection based on optimal probabilistic neural network’, IEEE Trans. Power Del., 2010, 25, (1), pp. 102-112
[30]Patra P. K., Nayak M., Nayak S. K., Gobbak N. K.: ‘Probabilistic neural network for pattern classification’, in Proc. IEEE Int. Joint Conf. Neural Netw., 2002, 2, pp. 1200-1205
[31]Pidre J. C., Carrillo C. J., Lorenzo A. E. F.: ‘Probabilistic model for mechanical power fluctuations in asynchronous wind parks’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 761-768
[32]Liu Z., Li H. X.: ‘A probabilistic fuzzy logic system for modeling and control’, IEEE Trans. Fuzzy Systems, 2005, 13, (6), pp. 848-859
[33]Li H. X., Liu Z.: ‘A probabilistic neural-fuzzy learning system for stochastic modeling’, IEEE Trans. Fuzzy Systems, 2008, 16, (4), pp. 898-908
[34]Lin H., Yan W. S., Li H.: ‘Fuzzy and PNN-based direct torque control for permanent magnet synchronous motor’, in Proc. IEEE Conf. Indust. Electron. and Appl., ICIEA 2009, 2009, pp. 1606-1611
[35]‘GE Energy’, http://www.gepower.com/home/index.htm
[36]Bose B. K.: ‘Modern power electronics and AC drives’ (Prentice Hall PTR, 1998)
[37]Mohan N., Undeland T. M., Robbins W. P.: ‘Power Electronics: Converters, Applications, and Design’ (Third Edition. Wiley, Inc. 2002)
[38]Yao J., Li H., Chen Z.: ‘An improved control strategy of limiting the DC-link voltage fluctuation for a doubly fed induction wind generator’ , IEEE Trans. Power Electron., 2008, 23, (3), pp. 1205-1213
[39]Chung S. K.: ‘Phase-locked loop for grid-connected three-phase power conversion systems’ , IEE Proc.-Electr. Power Appl., 2000, 147, (3), pp. 213-219
[40]AD210 Application Note, Analog Devices Co.
[41]LA-55P Application Note, LEM Co.
[42]PM30CSJ060 Application Note, Mitsubishi Electric Co.
[43]1M0365R Application Note, Fairchild Semiconductor Co.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明