博碩士論文 975201087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.118.154.79
姓名 陳冠樺(Kuan-hua Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具高敏感度及高訊雜比之非接觸式電容性生醫感測器研製
(Design of Non-Contact Capacitive Bio-Sensor with High Sensitive and High SNR)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文設計一新式的非接觸生醫感測器,在使用時可以提高量測時的方便性、安全性,不需與皮膚直接接觸,並且能做長時間量測生理訊號。設計依據是依電容性耦合訊號的原理來製作一個非接觸生醫感測器;但生理訊號通常都相當微弱,為了使訊號不受到衰減且能清楚的辨識,而此感測器具有下列優點:
(1) 能濾除直流偏壓且不影響輸入端的阻抗。
(2) 感測器具有高敏感度。
(3) 感測器具有高訊雜比。
(4) 外部屏蔽層,增加抗雜訊的強度。
  最後本文將實現所提出之非接觸生理訊號量測系統,並利用本文所設計的新式生理訊號感測器進行實際心電訊號量測,來驗證其正確性,實驗結果證實本論文提出之方法與可行性。
摘要(英) The purpose of this paper is to design a novel capacitive coupling sensor which provides a convenient, secure, and noncontact measurement for human bio-signal. It is useful for the long-term bio-signal measurement. The method is based on the principle of capacitive coupling to sense bio-signals. However, bio-signals are usually extremely weak. It becomes more difficult to measure bio-signals when using noncontact method. Therefore, this research addresses a new noncontact biomedical sensor having the following four advantages:
(1) Eliminating DC-bias without affecting the input impedance
(2) High sensitivity
(3) High signal-to-noise ratio (SNR)
(4) Reducing interference by making an external shielding
Finally, a non-contact electrocardiogram (ECG) measurement system is designed to verify the feasibility of the proposed capacitive coupling sensor. The presented sensor can be extended to other physiological signal measurement systems.
關鍵字(中) ★ 電容性感測
★ 高輸入阻抗
★ 非接觸電極
★ 心電訊號
關鍵字(英) ★ ECG
★ non-contact electrode
★ Capacitive sensor
★ high-input impedance
論文目次 摘要----------------------------------------------I
ABSTRACT------------------------------------------II
誌謝----------------------------------------------III
目錄----------------------------------------------IV
圖目錄--------------------------------------------VII
表目錄--------------------------------------------X
第一章 緒論---------------------------------------1
1.1 研究動機與目標--------------------------------1
1.2 文獻回顧--------------------------------------2
1.3 論文大綱--------------------------------------4
第二章 研究背景與原理-----------------------------5
2.1 心電圖概論------------------------------------5
2.2 電容性耦合感測原理----------------------------8
2.3 硬體系統原理----------------------------------10
2.3.1 儀表放大器----------------------------------10
2.3.2 低通濾波器----------------------------------11
2.3.3 高通濾波器----------------------------------13
2.3.4 多重反饋式帶通濾波器------------------------15
2.4 雜訊干擾與處理--------------------------------17
第三章 新式感測器之電路設計-----------------------19
3.1 傳統式電容性耦合感測器簡介--------------------19
3.2 新式感測器電路架構----------------------------23
3.2.1 感測器之高敏感度----------------------------24
3.2.2 感測器之新式等電位屏蔽設計------------------25
第四章 量測電路設計與實現-------------------------26
4.1 量測系統電路架構------------------------------26
4.2類比訊號處理系統架構---------------------------27
4.2.1交流耦合網路---------------------------------27
4.2.2 前級差動放大器------------------------------31
4.2.3 四階帶通濾波器------------------------------34
4.2.4陷波濾波器-----------------------------------35
4.2.5 後級放大與箝位電路--------------------------37
4.2.6 電感電容式陷波濾波器------------------------38
4.3 數位訊號處理系統架構--------------------------42
4.3.1 系統架構與FPGA簡介--------------------------42
4.3.2 IIR低通數位濾波器設計---------------------44
第五章 實現與驗證---------------------------------46
5.1 硬體電路實現----------------------------------46
5.1.1 具高敏感度及訊雜比的電容性感測器之實體電路--46
5.1.2 心電訊號量測之實體電路與波形驗證------------52
5.2 傳統式與新式電容性生醫感測器比較分析----------59
5.2.1 傳統式與新式電容性生醫感測器敏感度分析------59
5.2.2 傳統式與新式電容性生醫感測器訊雜比分析------60
5.2.3 使用不同型式感測器的全系統動態響應分析------63
5.3 實際生理訊號量測結果--------------------------66
5.3.1 實際量測心電訊號實驗方法與結果圖------------66
5.3.2 實際量測肌電訊號結果圖----------------------71
第六章 結論與未來展望-----------------------------72
6.1 結論------------------------------------------72
6.2 未來展望--------------------------------------73
參考文獻------------------------------------------74
作者簡歷------------------------------------------78
參考文獻 [1] S. Nishimura, Y. Tomita, and T. Horiuchi, “Clinical Application of an Active Electrode Using an Operational Amplifier,” IEEE Trans. Biomed. Eng., Vol. 39, No. 10, pp. 1096-1099, Oct., 1992.
[2] T. Degen, and H. Jäckel, “Pseudodifferential Amplifier for Bioelectric Events With DC-Offset Compensation Using Two-Wired Amplifying Electrodes,” IEEE Trans. Biomed. Eng., Vol. 53, No. 2, pp. 300-310, Feb., 2006.
[3] T. Degen, S. Torrent, and H. Jäckel, “Low-Noise Two-Wired Buffer Electrodes for Bioelectric Amplifiers,” IEEE Trans. Biomed. Eng., Vol. 54, No. 7, pp.1328-1332, Jul., 2007.
[4] W. H. Ko, M. R. Neuman, R. N. Wolfson, and E. T. Yon, “Insulated Active Electrodes,” IEEE Trans. Ind. Electron. Control. Instrum., Vol. 17, No. 2, pp.195-198, 1970.
[5] A. Potter, and L. Menke, “Capacitive Type of Biomedical Electrode,” IEEE Trans. Biomed. Eng., Vol. 17, No.4, pp.350-351, Oct., 1970.
[6] C. H. Lagow, K. J. Sladek, and P. C. Richardson, “Anodic Insulated Tantalum Oxide Electrocardiograph Electrodes,” IEEE Trans. Biomed. Eng., Vol. 18, No.2, pp.162-164, Mar., 1971.
[7] T. Matsuo, K. Iinuma,and M. Esashi, “A Barium-Titanate-Ceramics Capacitive-Type EEG Electrode,” IEEE Trans. Biomed. Eng., Vol. 20, No.4, pp.299-300, Jul., 1973.
[8] L. Gourmelon, and G. Langereis, “Contactless sensors for Surface Electromyography,” in Proc. 28th Ann. Intern. Conf. IEEE EMBS, pp.2514-2517, Aug., 2006.
[9] A. Ueno, Y. Akabane, T. Kato, H. Hoshino, S. Kataoka, Y. Ishiyama, “Capacitive Sensing of Electrocardiographic Potential Through Cloth From the Dorsal Surface of the Body in a Supine Position: A Preliminary Study,” IEEE Trans. Biomed. Eng., Vol. 54, No.4, pp.759-766, Apr., 2007.
[10] Y. Yama, A. Ueno, and Y. Uchikawa, “Development of a Wireless Capacitive Sensor for Ambulatory ECG Monitoring over Clothes,” in Proc. 29th Ann. Intern. Conf. IEEE EMBS, pp.5727-5730, Aug., 2007.
[11] Y. G. Lim, K. K. Kim, and K. S. Park, “The ECG Measurement in the Bathtub Using the Insulated Electrodes,” in Proc. 26th Ann. Intern. Conf. IEEE EMBS, pp.2383-2385, Sep., 2004.
[12] Y. G. Lim, K. K. Kim, and K. S. Park, “ECG Measurement on a Chair Without Conductive Contact,” IEEE Trans. Biomed. Eng., Vol. 53, No.5, pp.956-959, May., 2006.
[13] Y. G. Lim, K. K. Kim, and K. S. Park, “ECG Recording on a Bed During Sleep Without Direct Skin-Contact,” IEEE Trans. Biomed. Eng., Vol. 54, No.4, pp.718-725, Apr., 2007.
[14] H. J. Baek, J. S. Kim, K. K. Kim, and K. S. Park, “System for Unconstrained ECG Measurement on a Toilet Seat using Capacitive Coupled Electrodes : The Efficacy and Practicality,” in Proc. 30th Ann. Intern. Conf. IEEE EMBS, pp.2326-2328, Aug., 2008.
[15] S. Ishida, N. Shiozawa, Y. Fujiwara, and M. Makikawa, “Electrocardiogram Measurement during Sleep with Wearing Clothes Using Capacitively-Coupled Electrodes,” in Proc. 29th Ann. Intern. Conf. IEEE EMBS, pp.2647-2650, Aug., 2007.
[16] T. H. Kang, C. R. Merritt, E. Grant, B. Pourdeyhimi, and H. T. Nagle, “Nonwoven Fabric Active Electrodes for Biopotential Measurement During Normal Daily Activity,” IEEE Trans. Biomed. Eng., Vol. 55, No.1, pp.188-195, Jan., 2008.
[17] C. R. Merritt, H. T. Nagle, and E. Grant, “Fabric-Based Active Electrode Design and Fabrication for Health Monitoring Clothing,” IEEE Trans. Biomed. Eng., Vol. 13, No.2, pp.274-280, Mar., 2009.
[18] D. Higashi, T. Imai, A. Ueno, and O. Miyashita, “A Wearable Capacitive Heart-Rate Monitor for Controlling Electrically Assisted Bicycle,” in Proc. Ann. Intern. Conf. IEEE ICEMS, pp.1-6, 2009. 
[19] 黃建銘, “以數位訊號處理器實現經驗模態分解法用於心電訊號處理”,國立中央大學電機工程學系,碩士論文,民國九十七年七月。
[20] S. I. Fox, “Human phystology,” McGraw-Hill Inc., 1996.
[21] J. W. Clark, “The origin of biopotentials,” in Medical Instrumentation Application and Design, 1998, Third Edition, J. G. Webster ED., Houghton Mifflin.
[22] 盧明智,黃敏祥, “OP Amp 應用+實驗模擬” ,全華科技圖書股份有限公司,243-279、451-544頁,民國八十四年十二月。
[23] 關尚勇,林吉合, “破解腦電波” ,藝軒圖書出版社,24-36、74-128頁,民國九十一年。
[24] 張晉嘉, “生醫電訊號量測之市電干擾移除” ,國立台灣大學電機工程研究所碩士論文,民國九十年。

[25] S. Leonhardt, and A. Aleksandrowicz, “Non-Contact ECG Monitoring for Automotive Application,” in Proc. 5th Intern. Conf. IEEE ISSMDBS, pp.183-185, Jun., 2008.
[26] E. M. Spinelli, P. Areny, and M. A. Mayosky, “AC-Coupled Front-End for Biopotential Measurements,” IEEE Trans. Biomed. Eng., Vol. 50, No.3, pp.391-395, Mar., 2003.
[27] 賴仁傑, “具增益自動調整之穩態視覺誘發電位量測電路研製” ,國立中央大學電機工程學系,碩士論文,民國九十八年六月。
[28] 松井邦彥, “OP放大器應用技巧100例” ,科學出版社,12頁,西元2005年。
[29] 林銘鴻, “FPGA 即時實現穩態視覺誘發腦電訊號處理之大腦人機介面” ,國立中央大學電機工程學系,碩士論文,民國九十八年六月。
[30] 黃進強, “交流耦合平衡增益之腦波量測系統” ,國立中央大學電機工程學系,碩士論文,民國九十六年七月。
[31] Burr-Brown Corporation, INA128 Datasheet, Oct. 1996.
[32] Microchip Technology Inc., MCP3201 Datasheet, Jan. 2008
[33] Microchip Technology Inc., MCP4921 Datasheet, Dec. 2006
[34] Cyclone II Device Handbook, Altera, Inc., San Jose, CA, 2007
指導教授 徐國鎧(Kuo-kai Shyu) 審核日期 2010-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明