博碩士論文 975201123 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.14.132.214
姓名 陳俊宇(Jyun-yu Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 頻寬可重組式微波帶通濾波器之研製
(Bandwidth Reconfigurable Microwave Bandpass Filter)
相關論文
★ 利用缺陷型接地結構之雙頻微型平面倒F天線設計★ 應用於第三代行動電話之倒F天線設計
★ 使用寄生元件之平面式倒F型雙頻天線設計★ 利用寄生元件之平面式倒 F 型三頻天線設計
★ 無線通訊之三頻天線設計★ 無線通訊之雙頻與三頻槽孔型天線設計
★ 應用於智慧型行動裝置之LTE/WWAN多頻單極天線設計★ 應用於行動手持裝置之LTE/WWAN天線設計
★ 利用背腔式槽孔線結構之多頻段天線設計★ 利用缺陷地面共振電路之介質量測技術
★ 應用於藍芽與全球衛星定位系統之電抗性負載型雙頻槽孔天線★ 帶通圓形極化頻率選擇面之設計
★ 啞鈴型缺陷地面之介質量測電路分析與設計★ 雙頻圓極化微波極化器設計
★ 利用微小共振電路之多頻段天線設計★ 應用於X-band平面吸波器之薄型負載電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文將呈現一可解析的方法(analytical method),設計一可重組式微波共振器(reconfigurable microwave resonators)結構,此解析的方法著重於,如何找到共振器上可重組的極點與零點(reconfigurable poles and zeros),使得在應用可變電容二極體(varactor diode)製作的可重組式共振器,能有一個準確且有效率的設計指南。再來,利用此可重組式共振器將可實現一具有頻寬可重組效果(bandwidth reconfigurability)的微波帶通濾波器(bandpass filter,BPF)。
根據本論文提出的方法設計的可重組式濾波器,在調整頻寬的範圍內,可得到低通帶介入損耗(in-band insertion loss)的結果,再來,當頻寬變化時,濾波器的選擇度(selectivity)幾乎維持不變。最後再實現電路時,使用共平面波導(coplanar-waveguide)結構,完成本次論文的實驗,並且得到通帶內的介入損耗恆小於1.8dB,折返損耗(return loss)恆大於10dB。更重要的是,比例頻寬(fractional bandwidth,FBW)可由54.1%(中心頻率3.03GHz)變化到90.1%(中心頻率2.64GHz)。
摘要(英) An analytical design method for reconfigurable microwave resonant structures is presented. The method aims for how to position the reconfigurable poles and zeros of the resonators. The proposed analytical method is essentially poised for an efficient and accurate design of the reconfigurable microwave resonators loaded with varactors. Furthermore, a design approach for microwave bandpass filter (BPF) with bandwidth reconfigurability is also presented.
Compared to the reported design methodology, the presented approach aims for the design of the reconfigurable BPF with relatively wide bandwidth tuning range, as well as low in-band insertion loss. Furthermore, the filter selectivity remains almost unchanged while the fractional bandwidth varies. The proposed design approach is experimentally verified through the demonstration of a coplanar-waveguide BPF design. As a result, passband insertion loss is less than 1.8dB, and the return loss is greater than 10dB. Most importantly, the FBW has a relatively high reconfigurability ranging from 54.1% (at 3.03 GHz) to 90.9% (at 2.64 GHz).
關鍵字(中) ★ 可重組式濾波器
★ 低介入損耗
★ 可調式微波共振器
★ 可調式濾波器
關鍵字(英) ★ varactor-tuned
★ reconfigurable filter
★ low insertion loss
★ microwave tunable resonator
★ tunable filter
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 vi
圖目錄 viii
表目錄 xi
第一章 序論 1
1.1 研究動機與目的 1
1.2 文獻回顧與論文概述 4
第二章 共平面波導共振器 6
2.1 傳輸線與共平面波導結構 6
2.2 共平面波導式並聯共振器 8
2.3 共平面波導式串聯共振器 12
第三章 可重組式共振器設計 19
3.1 濾波器傳輸零點與極點 19
3.2 零點與極點可重組式之共振器 21
3.3 理想的可重組式共振器之分析 26
3.4 非理想的可重組式共振器之分析 32
3.5 可重組式共振器之實作量測 40
第四章 頻寬可重組式帶通濾波器設計 44
4.1 可重組式共振器上的參數設定與特性 44
4.2 串聯式開路殘段的參數設定 50
4.3 頻寬可重組式帶通濾波器之實作量測 56
第五章 結論 61
參考文獻 62
參考文獻 [1] H. Okazaki, A. Fukuda, K. Kawai, T. Furuta, S. Narahashi,“Reconfigurable RF circuits for future band-free mobile terminals,” Signals, Systems and Electronics, 2007. ISSSE '07. International Symposium, pp.99-102, Jul. 2007.
[2] I. C. Hunter and J. D. Rhodes, “Electronically tunable microwave bandpass filter,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp.1354–1360, Sep. 1982.
[3] A. R. Brown and G. M. Rebeiz, “A varactor-tuned RF Filter,” IEEE Trans. Microwave Theory Tech., vol.48, pp.1157–1160, Jul. 2000.
[4] B.-W. Kim and S.-W. Yun, “Varactor-tuned combline bandpass filter using step-impedance microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 4, pp. 1279–1283, Apr. 2004.
[5] S.-J. Park and G. M. Rebeiz, “Low-loss two-pole tunable filters with three different predefined bandwidth characteristics,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 5, pp. 1137-1148, May 2008.
[6] J. Lee and K. Sarabandi, “An analytic design method for microstrip tunable filters,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 7, pp. 1699-1706, Jul. 2008.
[7] M. A. El-Tanani and G. M. Rebeiz, “A two-pole two-zero tunable filter with improved linearity,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 4, pp. 830-839, Apr. 2009.
[8] M. A. El-Tanani and G. M. Rebeiz, “Corrugated microstrip coupled lines for constant absolute bandwidth tunable filters,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 4, pp. 956-963, Apr. 2010.
[9] W.-X. Tang and J.-S. Hong, “Varactor-tuned dual-mode bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 8, pp. 2213-2219, Aug. 2010.
[10] C. Rauscher, “Reconfigurable bandpass filter with a three-to-one switchable passband width,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 2, pp. 573–577, Feb. 2003.
[11] G. L. Matthaei, “Narrow-band, fixed-tuned, and tunable bandpass filters with zig–zag hairpin–comb resonators,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 4, pp. 1214–1219, Apr. 2003.
[12] M. Sánchez-Renedo et al., “Tunable combline filter with continuous control of center frequency and bandwidth,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 191–199, Jan. 2005.
[13] W. M. Fathelbab and M. B. Steer, “A reconfigurable bandpass filter for RF/microwave multifunctional systems,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 1111–1116, Mar. 2005.
[14] H.-L. Zhang and Kevin J. Chen, “Bandpass filters with reconfigurable transmission zeros using varactor-tuned tapped stubs,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 249–251, May 2006.
[15] A. Miller and J.-S. Hong, “Wideband bandpass filter with reconfigurable bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 28–30, Jan. 2010.
[16] A. Miller and J.-S. Hong, “Combline filter with tunable bandwidth and centre frequency,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2010, pp. 1476-1479.
[17] I. Reines, S.-J. Park and G. M. Rebeiz, “Compact low-loss tunable X-band bandstop filter with miniature RF-MEMS switches,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 7, pp. 1881–1895, Jul. 2010.
[18] H. Joshi, H. H.Sigmarsson, D. Peroulis, and W.J. Chappell, “Highly loaded evanescent cavities for widely tunable high-Q filters,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 2133-2136.
[19] P. Blondy, C. Palego, M. Houssini, A. Pothier, and A. Crunteanu, “RF-MEMS reconfigurable filters on low loss substrates for flexible front ends,” 2007 Asia Pacific Microwave Conference, Dec. 2007., pp.1-3.
[20] H. Joshi, H. H. Sigmarsson, S. Moon, D. Peroulis, and W. J. Chappell, “High-Q fully reconfigurable tunable bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 12, pp. 3525-3533, Dec. 2009.
[21] Xiaoyu Mi, O. Toyoda, S. Ueda, “MEMS tunable bandpass filters on high-k LTCC,” in IEEE 23rd International Micro Electro Mechanical Systems (MEMS )Conference, pp.787-790, Jan. 2010.
[22] M. A. El-Tanani and G. M. Rebeiz, “High-performance 1.5–2.5-GHz RF-MEMS tunable filters for wireless applications, ” IEEE Trans. Microwave Theory Tech., vol. 58, no. 6, pp. 1629-1637, Jun. 2010.
[23] H. H. Sigmarsson, J. Lee, D. Peroulis and W. J. Chappell, “Reconfigurable order bandpass filter for frequency agile systems,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2010, pp. 1756-1759.
[24] P. W. Wong and I. C. Hunter, “Parallel-coupled switched delay line (SDL) reconfigurable microwave filter,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 513-516.
[25] W.-H. Tu, “Switchable microstrip bandpass filters with reconfigurable frequency responses,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2010, pp. 1488-1491.
[26] C. P. Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw. Theory Tech., vol. 17, no. 12, Dec. 1969.
[27] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Norwood, MA: Artech House, 1980.
[28] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applicatioins. New York: Wiley, 2001.
[29] D. M. Pozar, Microwave Engineering, 3¬rd ed. John Wiley & Sons, Inc., 2005.
[30] 方國誌, “超寬頻共平面波導帶通濾波器之研製,” 國立中央大學電機工程所碩士論文, 2006.
[31] 王孝寧, “微小化超寬頻共平波導帶通濾波器之研製,” 國立中央大學電機工程所碩士論文, 2009.
[32] N. I. Dib et al., “Theoretical and experimental characterization of coplanar waveguide discontinuities for filter applications,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 873-881, May 1991.
[33] Khelifa Hettak et al., “A useful new class of miniature CPW shunt stubs and its impact on millimeter-wave integrated circuits” IEEE Trans. Microwave Theory Tech., vol. 47, no. 12, Dec. 1999.
[34] K. Hettak, C. J. Verver, M. G. Stubbs, and G. A. Morin, “A novel compact uniplanar MMIC Wilkinson power divider with ACPS series stubs,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, Jun. 2003, pp. 59–62.
[35] N. Yang, Z. N. Chen and Y. Zhang, “CPW bandpass filter with serially-connected series-stub resonators,” in Proc. 35rd Eur. Microwave Conf., vol. 1, Oct. 2005.
[36] K. Hettak, G. A. Morin, and M. G. Stubbs, “Compact MMIC CPW and asymmetric CPS branch-line couplers and wilkinson dividers using shunt and series stub loading,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 5, pp. 1624-1635, May 2005.
[37] 蔡炫儒, “W頻段光子發射器中射頻前端電路之研製,” 國立中央大學電機工程所碩士論文, pp. 43-68, 2010.
[38] Skyworks Solutions, Inc. silicon abrupt junction varactors SMV1405 data sheet.
指導教授 丘增杰、陳念偉
(Tsen-chieh Chiu、Nan-wei Chen)
審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明