博碩士論文 975202023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.204.56.104
姓名 鄭豐叡(CHENG FUNG-YU)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在多核心電腦上實作偵測k-clique community之平行演算法
相關論文
★ 捷徑問題在特殊圖形上之演算研究★ 行動電腦教室與其管理系統的設計與建置
★ 蛋白質體視覺化系統之實作★ 最小切割樹群聚演算法極端情形之研究
★ 教室內應用無線科技之一對一數位學習模式★ 蛋白質交互作用網路之視覺化系統
★ 以賓果式遊戲輔助技巧熟練之數位學習環境設計與實作★ 蛋白質註解的三維視覺化工具
★ Joyce 2:一個在一對一數位教室環境下之小組競爭遊戲★ 同儕計算網路上內文散佈演算法之實作與效能評估
★ 在直角多邊形上使用基因演算法畫樹之研究★ 經由潛在語義的線索從蛋白質交互作用網路進行蛋白質功能的預測
★ 從生物文件中萃取出蛋白質或基因之名稱★ 利用蛋白質交互作用網路偵測必要性蛋白質
★ 族群基因繪圖演算法的改良★ 設計與實做一對一數位教室環境與元件交換社群
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
偵測真實網路中的community結構是重要的研究主題,在許多方面皆有所應用,譬如:生物學、社會學、全球資訊網以及行動通信網路等。有許多不同的community偵測方法被提出。其中,我們發現Palla, G., et al提出的k-clique community相當重要。不過,他們的程式CFinder執行時間比起其它的偵測方法都要來得長。我們提出偵測k-clique community的平行演算法Parallel-Community,並實作在多核心電腦上,藉以縮短偵測k-clique community的時間。不過,在我們實作的時候,發現我們的作法和Gregori, E., et al的COS演算法,在某些部分作法相似。我們用五張真實網路圖,來測試比較Parallel-Community、COS和CFinder。使用單處理器來執行時,Parallel-Community與CFinder相比,最快可以到130倍,最慢至少可以達到54倍。使用多處理器來執行時,Parallel-Community與COS相比,最快可以到61倍,最慢至少可以達到24倍。
摘要(英) Abstract.
Detecting communities is an important research topic. It can be applied to biology, sociology, World Wide Web, mobile communication networks, etc. Many different detection methods have been published. Among them, k-clique community by Palla, G., et al is an important one. However, their program Cfinder’s execution time compared with other detection methods is time consuming. In order to reduce the running time of detecting communities, we propose a parallel algorithm of k-clique community "Parallel-Community" and implement it on a multi-core parallel computer. When we implement the algorithm, we find out some parts of Parallel-Community are similar to Gregori, E., et al’s COS. We experiment on five real networks to test Parallel-Community, COS, and CFinder. When executing with single processor, Parallel-Community achieve 54 to 130 times faster than CFinder. When executing with multiple processors, Parallel-Community achieve 24 to 61 times faster than COS.
關鍵字(中) ★ 平行演算法
★ 分群問題
★ 連通圖問題
關鍵字(英) ★ parallel algorithms
★ k-clique communities
★ connected components
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號與專有名詞 ix
第一章 序論 1
1-1 community背景介紹 1
1-2 研究動機 3
1-3 研究方法簡介 5
1-4 研究成果簡介 7
1-5 論文架構 8
第二章 相關研究 9
2-1 CPM介紹 10
2-2 MCE演算法相關研究 15
2-3 平行connected component相關研究 25
第三章 Parallel-community演算法 28
3-1 Parallel-community作法介紹 28
3-2 計算Gc的端點 32
3-3 計算Gc中端點的邊 34
3-4 在disjoint set中處理Gc的邊以及合併p組disjoint set 38
第四章 實驗結果與討論 42
4-1 基本資料介紹 43
4-2 計算maximal clique的執行結果比較 44
4-3 單處理器下CPM.step B及CPM.step C的執行結果 47
4-4 多處理器下CPM.step B及CPM.step C的執行結果 47
第五章 結論與未來工作 57
參考文獻 59
附錄A 63
參考文獻 [1] Ahn, Y. Y., Bagrow, J. P., Lehmann, S. (2010). "Link communities reveal multiscale complexity in networks." Nature 466(7307): 761-764.

[2] Bron, C., Kerbosch, J. (1973). "Algorithm 457: finding all cliques of an undirected graph." Communications of the ACM 16(9): 575-577.

[3] Chen, J., Yuan, B. (2006). "Detecting functional modules in the yeast protein-protein interaction network." Bioinformatics 22(18): 2283-2290.

[4] Chiba, N., Nishizeki, T. (1985). "Arboricity and subgraph listing algorithms." SIAM Journal on Computing 14(1): 210-223.

[5] Chin, C. H., Chen, S. H., Ho, C. W., Ko, M. T., Lin, C. Y. (2010). "A hub-attachment based method to detect functional modules from confidence-scored protein interactions and expression profiles." BMC bioinformatics 11(suppl 1): S25.

[6] Chin, C. H., Chen, S. H., Chen, C. Y., Hsiung, C. A., Ho, C. W., Ko, M. T., Lin, C. Y. (2013). "Spotlight: Assembly of protein complexes by integrating graph clustering methods." Gene 518(1): 42-51.

[7] Chin, F. Y., Lam, J., Chen, I. N. (1982). "Efficient parallel algorithms for some graph problems." Communications of the ACM 25(9): 659-665.

[8] Choudhary, A., Thakur, R. (1994). "Connected component labeling on coarse grain parallel computers: an experimental study." Journal of Parallel and Distributed Computing 20(1): 78-83.

[9] Clauset, A., Newman, M. E., Moore, C. (2004). "Finding community structure in very large networks." Physical review E 70(6): 066111-1 - 066111-6.

[10] Clauset, A., Moore, C., Newman, M. E. (2008). "Hierarchical structure and the prediction of missing links in networks." Nature 453(7191): 98-101.

[11] Copty, N., Ranka, S., Fox, G. C., Shankar, R. V. (1994). "A data parallel algorithm for solving the region growing problem on the connection machine." Journal of Parallel and Distributed Computing 21(1): 160-168.

[12] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2009). "Introduction to algorithms." MIT press, Cambridge, Massachusetts London, England.

[13] Eppstein, D., Löffler, M., Strash, D. (2010). "Listing all maximal cliques in sparse graphs in near-optimal time." Algorithms and Computation 6506: 403-414.

[14] Fortunato, S. (2010). "Community detection in graphs." Physics Reports 486(3): 75-174.

[15] Gregori, E., Lenzini, L., Mainardi, S. (2013). "Parallel k-clique community detection on large-scale networks." IEEE Transactions on Parallel and Distributed Systems 24(8): 1651-1660.

[16] Han, Y., Wagner, R. A. (1990). "An efficient and fast parallel-connected component algorithm." Journal of the ACM 37(3): 626-642.

[17] Hirschberg, D. S., Chandra, A. K., Sarwate, D. V. (1979). "Computing connected components on parallel computers." Communications of the ACM 22(8): 461-464.

[18] Johnson, D. S., Yannakakis, M., Papadimitriou, C. H. (1988). "On generating all maximal independent sets." Information Processing Letters 27(3): 119-123.

[19] Karp, R. M. (1972). "Reducibility among combinatorial problems." Complexity of Computer Computations, Miller, R. E., Thatcher, J. W., Bohlinger, J. D., Ed., 85-103, Springer-Verlag, US.

[20] Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (2004). "Mining Scale-free Networks using Geodesic Clustering.", Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 719-724, ACM Press, New York, USA.

[21] Kose, F., Weckwerth, W., Linke, T., Fiehn, O. (2001). "Visualizing plant metabolomic correlation networks using cliquemetabolite matrices." Bioinformatics 17(12): 1198-1208.

[22] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G. (1980). "Generating all maximal independent sets: NP-hardness and polynomial-time algorithms." SIAM Journal on Computing 9(3): 558-565.

[23] Leskovec, J. "Stanford large network dataset collection." from http://snap.stanford.edu/data/.

[24] Lick, D. R., White, A. T. (1970). "k-degenerate graphs." Canadian Journal of Mathematics 22: 1082-1096.

[25] Makino, K., Uno, T. (2004). "New algorithms for enumerating all maximal cliques." 260-272, Proceedings of the 9th Scandinavian Workshop on Algorithm Theory, Springer-Verlag, Heidelberg, Berlin.

[26] Moon, J. W., Moser, L. (1965). "On cliques in graphs." Israel journal of Mathematics 3(1): 23-28.

[27] Nepusz, T., Yu, H., Paccanaro, A. (2012). "Detecting overlapping protein complexes in protein-protein interaction networks." Nature methods 9(5): 471-472.

[28] Palla, G., Derényi, I., Farkas, I., Vicsek, T. (2005). "Uncovering the overlapping community structure of complex networks in nature and society." Nature 435(7043): 814-818.

[29] Palla, G., Barabási, A. L., Vicsek, T. (2007). "Quantifying social group evolution." Nature 446(7136): 664-667.

[30] Perkins, C. E. (2008). "Ad hoc networking.", Addison-Wesley, Boston, US.

[31] Pons, P., Latapy, M. (2005). "Computing communities in large networks using random walks." Computer and Information Sciences-ISCIS 2005: 284-293, Springer Berlin Heidelberg.

[32] Reddy, K. P., Kitsuregawa, M., Sreekanth, P., Rao, S.S. (2002). "A Graph Based Approach to Extract a Neighborhood Customer Community for Collaborative Filtering.", Proceedings of the Second International Workshop on Databases in Networked Information Systems, 188-200, Springer-Verlag, London, UK.

[33] Savage, C., Ja′Ja′, J. (1981). "Fast, efficient parallel algorithms for some graph problems." SIAM Journal on Computing 10(4): 682-691.

[34] Schmidt, M. C., Samatova, N. F., Thomas, K., Park, B. H. (2009). "A scalable, parallel algorithm for maximal clique enumeration." Journal of Parallel and Distributed Computing 69(4): 417-428.

[35] Tomita, E., Tanaka, A., Takahashi, H. (2006). "The worst-case time complexity for generating all maximal cliques and computational experiments." Theoretical Computer Science 363(1): 28-42.

[36] Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I. (1977). "A new algorithm for generating all the maximal independent sets." SIAM Journal on Computing 6(3): 505-517.

[37] Van Dongen, S. M. (2000). "Graph clustering by flow simulation", Ph.D. Thesis, University of Utrecht, The Netherlands.
指導教授 何錦文 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明