博碩士論文 975202050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.17.75.45
姓名 馬紹宗(Shao-zong Ma)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 整合動態與靜態視覺技術的盲點區域車輛偵測
(Blind-spot Vehicle Detection with Dynamic and StaticVision Methods)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來為了減少交通事故,許多車廠皆發展車輛輔助安全駕駛系
統,期望在許多危險發生前,預先給予駕駛警示。駕駛人在駕駛車輛時,在車的兩側都有一塊無法透過後視鏡觀察到的盲點視線範圍,若駕駛人沒有察覺盲點區域有其他車輛而進行變換車道,則有可造成碰撞。為了確保駕駛人在變換車道時盲點區域確實沒有其他車輛,我們利用在後照鏡下方架設相來拍攝盲點區域的影像,逶過電腦視覺的方法來偵測是否後方有可能造成威脅的來車。
我們提出的盲點偵測系統包含:定義盲點偵測範圍、在偵測範圍中
估計光流、將這些得到的光流做進一步篩選和群聚,得到這些由光流群聚所得到的可能為來車的移動物之後,最後在利用追蹤與穩定方法來做最後確認,得到的結果便很有可能是後方來車。另一方面,為了避免被追蹤車輛在追蹤過程中可能因為等速而造成光流向量消失而無法繼續以光流來偵測車輛,在此情況下我們以車底陰影來持續追蹤車輛。
我們在各種不同的道路環境下進行偵測,由實驗結顯示,在白天狀
況下市區的側邊車輛偵測率約為95%、在郊區的偵測率約為97%,而在夜晚狀況下偵測率約為90%。我們提出的盲點偵測法在Intel Core 2 Duo?E8400 3.0 GHz CPU, 2GB DDR RAM, Microsoft? Windows 7 機器上有著每秒30 張的處理速度。
摘要(英) Developing a real-time automotive driver assistant system for safety has emerged wide attention in recent years. When driving on the road, the fields of view beside the host vehicle for drivers are limited. If the driver changes lane without being aware of the objects in the blind-spot area, the potential collision accident may occur. For ensuring the safety of changing lane, our method uses a camera mounted in side-view mirror to capture the image in blind-spot area and detects the vehicle with computer-vision technology.
The proposed method offers the blind-spot detection includes defining the detection and decision zone, estimating optical flow, filtering and grouping these estimated optical flow and using the process of tracking and stabilization to accomplish the detection. Considering the situation that optical flow disappears in consecutive tracking process, the proposed method detects the vehicle shadow to keep detecting and tracking. The proposed method also uses the shadow to enhance the detection result generated by optical flow.
We apply the proposed detection method to many different situations. In experiments, the detection rate in urban area in daylight is about 95%. The detection rate in suburban area is about 97%. The detection rate in night is
about 90%. The detection method operates in Intel? Core 2 Duo? E8400 3.0 GHz CPU, 2GB DDR RAM, Microsoft? Windows 7 has at least 30 frames per seconds.
關鍵字(中) ★ 盲點偵測
★ 光流
★ 智慧型車輛
關鍵字(英) ★ ITS
★ blind-spot detection
★ optical flow
論文目次 摘要 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ II
誌謝 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ III
目錄 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ IV
第一章 緒論 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 一
第二章 相關研究 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 二
第三章 光流估計 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 三
第四章 車輛偵測 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 四
第五章 實驗 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 五
第六章 結論及未來工作 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 六
附錄 英文版論文 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 七
Abstract ............................................................................................................. ii
Contents ............................................................................................................ iii
Chapter 1 Introduction ...................................................................................... 1
1.1 Motivation ........................................................................................ 1
1.2 System overview .............................................................................. 2
1.3 Thesis organization ........................................................................... 3
Chapter 2 Related Works ................................................................................... 5
2.1 Feature-based detection methods ...................................................... 5
2.1 Optical flow-based detection method ............................................. 10
2.1 Sensor-based detection methods ..................................................... 18
Chapter 3 Optical Flow Estimation ................................................................. 20
3.1 Definition of optical flow and image flow ...................................... 20
3.2 Optical-flow estimation................................................................... 21
3.2.1 Horn and Schunck approach ..................................................... 21
3.2.2 Lucas and Kanade approach ..................................................... 25
3.2.1 Pyramidal structure approach ................................................... 27
Chapter 4 Vehicle Detection ............................................................................ 30
4.1 Definition of detection and decision region .................................... 30
4.2 Feature extraction ............................................................................ 33
4.3 Preprocessing of optical flow .......................................................... 34
4.3.1 Filtering optical flow ................................................................ 34
4.3.2 Grouping optical flow .............................................................. 36
4.4 Lateral vehicle detection ................................................................. 40
4.4.1 Lateral objects hypothesis ........................................................ 42
4.4.2 Lateral objects hypothesis verification ..................................... 43
4.5 Static-information extraction .......................................................... 48
Chapter 5 Experiments .................................................................................... 51
5.1 Experimental environments ............................................................ 51
5.2 Experimental results ........................................................................ 53
5.3 Discussion ....................................................................................... 58
Chapter 6 Conclusion and Future Works ........................................................ 59
6.1 Conclusions ..................................................................................... 59
6.2 Future works.................................................................................... 60
參考文獻 [1] Achler, O. and M. M. Trivedi, "Vehicle wheel detector using 2D filter
banks," in Proc. IEEE Intelligence Vehicles Symp., Parma, Italy,
Jun.14-17, 2004, pp.25-30.
[2] Alonso J. D., E. R. Vidal, A. Rotter, and M. Mühlenberg, "Lane-change
decision aid system based motion-driven vehicle tracking," IEEE Trans.
Intelligent Transportation Systems, vol.9, pp.185-190, 2008.
[3] Anandan, P., "A computational framework and an algorithm for the
measurement of visual motion," Int. Jour. of computer Vision, vol.2, no.3,
pp. 283-310, 2004.
[4] Baker, S. and I. Matthew, "Lucas-Kanade 20 years on: A unifying
framework," Int. Jour. of Computer Vision, vol.56, no.3, pp.221-255,
2003.
[5] Barron, J. L., D. J. Fleet, and S. S. Beauchemin, "Performance of optical
flow techniques," Int. Jour. of Computer Vision, vol.12, no.1, pp.43-77,
1994.
[6] Batavia, P. H., D. A. Pomerleau, and C. E. Thorpe, "Overtaking vehicle
detection using implicit optical flow," in Proc. IEEE Conf. on Intelligent
Transportation System, Pittsburgh, PA, Nov.9-12, 1997, pp.729-734.
[7] Becker, L. P., A. Debski, D. Degenhardt, M. Hillenkamp, and I.
Hoffmann, "Development of a camera-based blind spot information
system," in Advanced Microsystems for Automotive Applications, J.
Valldorf and W. Gessner, eds., Springer-Verlag, Berlin, 2005, Ch.6,
pp.71-84.
[8] Bishop, R., Intelligent Vehicle Technology and Trends, Artech-House,
Norwood, 2005.
- 62 -
[9] Blanc, N., B. Steux, and T. Hinz, "LaRASideCam - a fast and robust
vision-based blindspot detection system," in Proc. IEEE Intelligent
Vehicles Symp., Istanbul, Turkey, Jun.13-15, 2007, pp.480-485.
[10] Bouguet, J. Y., Pyramidal Implementation of the Lucas Kanade Feature
Tracker Description of the algorithm, OpenCV technical Document,
Intel Microprocessor Research Labs, 2007.
[11] Chung, E. Y., H. C. Jung, E. Chang, and I. S. Lee, "Vision based for lane
change decision aid system," in Proc. of The 1st Int. Forum on Strategic
Technology, Ulsan, Korea, Oct.18-20, 2006, pp.10-13.
[12] David, L. S., Z. Wu, and H. Sun, “Contour-based motion estimation,” in
Comput. Vision Graphics. Image Proc, vol. 23, Jun, 1982, pp. 313-326.
[13] Horn, B. K. P. and B. G. Schunck, “Determining optical flow,” Int. Jour.
of Artificial Intelligence, vol. 17, pp.185–204, 1981.
[14] Huang, Y.-C., A Vision-based Vehicle to Vehicle Detection and Tracking
System, Master thesis, Computer Science and Information Engineering
Dept., National Central Univ., Chungli, Taoyuan, Taiwan, 2005.
[15] Jin, J.-S., Z. Zhu, and G. Xu, "A stable vision system for moving
vehicles," IEEE Trans. on Intelligent Transportation Systems, vol.1, no.1,
pp.32-39, 2000.
[16] Ko, S.-J., S.-H. Lee, and K.-H. Lee, "Digital image stabilizing algorithm
based on bit-plane matching," IEEE Trans. on Consumer Electronics,
vol.44, no.3, pp.617-622, 1998.
[17] Krips, M., J. Valten, and A. kummert, "AdTM tracking for blind spot
collision avoidance," in Pro. IEEE Intelligent Vehicles Symp., Parma,
Italy, Jun. 14-17, 2004, pp.544-548.
[18] Lin, Y.-H., Visual Blind-spot Detection for Lane Change Assistance,
- 63 -
Master thesis, Computer Science and Information Engineering Dept.,
Univ. of Center, Chungli, Taoyuan, 2009.
[19] Lucas, B. D. and T. Kanade, "An iterative image registration technique
with an application to stereo vision," in Proc. 7th Int. Joint Conf. on
Artificial Intelligence, Vancouver, 1981, pp.674-679.
[20] Mota, S., E. Ros, J. Díaz, G. Botella, F. Vargas-Martin, and A. Prieto,
"Motion driven segmentation scheme for car overtaking sequences," in
Proc. of 10th Int. Conf. on Vision in Vehicles, Granada, Spain, Sept.7-10,
2003.
[21] Mota, S., E. Ros, E. M. Ortigosa, and F. J. Pelayo, "Bio-inspired motion
detection for blind spot overtaking monitor," Int. Jour. of Robotics and
Automation, vol.19, no.4 pp.190-196, 2004.
[22] Paik, J. K., Y. C. Park, and D. W. Kim, "An adaptive motion decision
system for digital image stabilizer based on edge pattern matching,"
IEEE Trans. on Consumer Electronics, vol.38, no.3, pp.607-616, 1992.
[23] Ratakonda, K., "Real-time digital video stabilization for multimedia
applications," in Proc. IEEE Symposium on Circuits and Systems,
Monterey, CA, May 31-Jun.3, 1998, pp.69-72.
[24] Reichardt, W., "Autocorrelation, a principle for evaluation of sensory
information by the central nervous system," in Sensory
Communication,W. A. Rosenblith, ed., Wiley, New York, 1961,
pp.303-317.
[25] Ruder, M., W. Enkelmann, and R. Garnitz, “Highway lane change
assistant,” in Pro. IEEE Intelligent Vehicles Symp, Versailles, France,
vol.1, pp.240–144, Jun.17-21, 2002.
[26] Sotelo, M. A., J. Barriga, D. Fernández, I. Parra, J. E. Naranjo, M.
Marrón, S. Alvarez, and M. Gavilán, "Vision-based blind spot detection
- 64 -
using optical flow," Lecture Notes in Computer Science, vol.4739,
pp.1113-1118, 2007.
[27] Uornori, K., A. Morimura, H. Ishii, T. Sakaguchi, and Y. Kitamura,
"Automatic image stabilizing system by full-digital signal processing,"
IEEE Trans. on Consumer Electronics, vol.36, no.3, pp.510-519, 1990.
[28] Wang, J., G. Bebis, and R. Miller, "Overtaking vehicle detection using
dynamic and quasi-Static background modeling," in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, San Diego, CA, Jun.20-26,
2005, pp.64-71.
[29] Wu, B.-F., W.-H. Chen, C.-W. Chang, and C.-J. Chen, "A new vehicle
detection with distance estimation for lane change warning systems," in
Proc. IEEE Intelligent Vehicles Symp., Istanbul, Turkey, Jun.13-15, 2007,
pp.698-703.
[30] Zhou, J., D. Gao and D. Zhang, "Moving vehicle detection for automatic
traffic monitoring," IEEE Trans. of Vehicular Technology, vol.56, no.1,
pp.51-59, 2007.
指導教授 曾定章(Din-chang Tseng) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明