博碩士論文 975202071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:100.24.122.228
姓名 陳伯瑞(Bo-ruei Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 一個快速立體視覺系統的嵌入式硬體設計
(Embedded Hardware Design of a Fast Stereo Vision System)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 即時連續影像接合系統設計與實作
★ 基於雙核心平台的嵌入式步態辨識系統★ Gigabit乙太網路的UDP/IP硬體加速器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 立體視覺廣泛運用於各種領域,在日常生活中亦發展出許多應用,例如:虛擬實境、自動導航機器人,自動追蹤與安全監控系統,和3D人機互動介面系統等等。由於立體視覺演算法複雜耗時,而且許多應用需要即時性的系統效能,因此需要設計一個滿足即時性的立體視覺硬體平台。
  本研究提出一個適合硬體實作的即時立體視覺系統架構。並基於高階系統硬體設計方法論,以未校正影像經過影像前處理與連通物件標定找出感興趣區塊,例如面積較大的障礙物,接著以區域匹配方法中的區塊匹配 (SAD)進行立體匹配得到disparity,最後經由查詢事先量測好的 disparity-深度關係表格得到深度資訊。在硬體實作上,首先使用 IDEF0技術將系統進行階層模組化,再以Grafcet將經過高階語言驗證的演算法進行離散事件建模,接著將 Grafcet模型轉譯成VHDL硬體電路。我們設計並實作了影像前處理模組和立體匹配模組的嵌入式硬體,並設計管線化控制器將各個硬體模組整合為一個高速、平行架構的立體視覺系統,最後於 FPGA晶片進行硬體的驗證。
  硬體實驗結果顯示:本系統在92.34 MHz的系統時脈下,可以達到每秒28張(28 FPS)立體影像深度估測的效能。對於低複雜度場景的立體視覺應用,可充分滿足即時性的效能需求與準確性。相較於傳統使用高性能CPU或GPU的立體視覺解決方案,本研究所實現的立體視覺系統具有精簡、低成本和高性能的優點。
摘要(英) Stereo vision has been widely used in many fields and our daily life, such as virtual reality, auto-navigation of mobile robot, auto-tracking and security monitoring system, and 3D human-machine interaction system, etc. Due to high computational complexity of stereo vision algorithm and needs of real-time system performance, it needs to design a real-time stereo vision hardware platform.
  In this thesis, we propose a real-time stereo vision system architecture and it is suitable for hardware implementation. Based on high-level system hardware design methodology, our proposed method finds regions of interest (ROI), such as big obstacles, from un-calibrated stereo images by image preprocessing and connected component labeling, and then processes local stereo matching with block-based match metric, SAD, to get disparity, and finally gets depth information from a lookup disparity-depth relation table. About hardware implementation, we use IDEF0 to set up systematic stratum module at first, and then perform the discrete modeling of the software-proved algorithm with GRAFCET, and translate VHDL hardware circuit from GRAFCET models. We design and implement not only image preprocessing IPs and stereo matching IP, but also pipeline controller to integrate all IPs into a high-speed and parallel architecture stereo vision system, and finally we verify hardware system on FPGA devices.
  The result shows our system performance can achieve 28 frames per second (FPS) stereo images depth estimation under 92.34MHz clock rate. It fully satisfies the needs of real-time performance and accuracy for stereo vision application in low-complexity scene. By comparison with traditional stereo vision solution using high-performance CPU or GPU, our stereo vision system has advantages of simple, low-cost, and high-performance.
關鍵字(中) ★ 立體視覺
★ 嵌入式硬體設計
關鍵字(英) ★ stereo vision
★ embedded hardware design
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目標 2
1.4 論文架構 2
第二章 文獻探討 3
2.1 立體匹配 3
區域方法 3
全域方法 4
2.2 即時立體視覺系統實作相關研究 5
以通用處理器為基礎即時立體視覺系統實作 5
以圖形處理器為基礎即時立體視覺系統實作 5
以數位信號處理器為基礎即時立體視覺系統實作 6
以ASIC為基礎即時立體視覺系統實作 6
第三章 立體視覺 7
3.1 針孔攝影機模型 7
3.2 Epipolar Geometry 9
3.3 攝影機標定 10
3.4 矯正 10
3.5 立體匹配 11
3.6 小結 13
第四章 立體視覺系統設計與架構 14
4.1 RBG轉灰階 15
4.2 Sobel邊緣偵測 15
4.3 Otsu 二值化 17
4.4 連通物件標定 19
4.5 最小凸邊形演算法 27
4.6 立體匹配 30
4.7 演算法驗證 31
4.7.1 影像前處理 32
4.7.2 立體匹配 34
4.7.3 Disparity和深度關係 35
第五章 立體視覺硬體設計與實作 36
5.1 硬體合成方法論 36
5.1.1 Grafcet 37
5.2硬體設計與實作 38
5.2.1 RBG轉灰階模組 39
5.2.2 Sobel邊緣偵測模組 41
5.2.3 Otsu二值化模組 44
5.2.4 連通物件標定模組 49
5.2.5 立體匹配模組 55
5.2.6 系統整合與管線化控制器 58
5.3 硬體驗證與實驗 68
5.3.1 實驗平台 68
5.3.2 軟體模擬與FPGA硬體驗證實驗 70
5.3.3 SDRAM與 SSRAM效能比較 72
5.3.4 軟體與硬體執行時間比較 73
第六章 結論 74
6.1 結論 74
6.2 未來展望 75
參考文獻 76
參考文獻 [1] Nishi A., ”Development of Wall-Climbing Robots”, Computers Elect. Engng, Vol.22, pp. 123-149, 1996.
[2] Antonelli G., Chiaverini S., Finotello R., and Schiavon R., “Real-Time Path Planning and Obstacle Avoidance for RAIS: An Autonomous Underwater Vehicle”, IEEE Journal of Oceanic Engineering, Vol. 26, No. 2, pp. 216-227, 2000.
[3] Mori H., Kotani S., and Kiyohiro N., “A Robotic Travel Aid “HITOMI”, Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems , Vol.3, pp. 1716-1723 , 1994.
[4] J. Ze-tao, Z. Bi-na, W. Min, and C. zhong-xiang, “A 3D Reconstruction Method Based on Images Dense Stereo Matching”, IEEE Conference on Genetic and Evolutionary Computing, pp. 319-323, 2009.
[5] H. Ying, J. Song, X. Ren and W. Wang, “Fingertip detection and tracking using 2D and 3D information”, World Congress on Intelligent Control and Automation, pp. 1149-1152, Jun. 2008.
[6] M.Z. Brown, D. Burschka, and G. Hager, “Advances in Computational Stereo”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no.8, pp. 993-1008, August 2003.
[7] Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline search using dynamic programming”, IEEE transactions on pattern analysis and machine intelligence, vol. 7, pp. 139-154, 1985.
[8] S. Forstmann, Y. Kanou, O. Jun, S. Thuering, and A. Schmitt, “Real-Time Stereo by using Dynamic Programming”, in Proceedings of Computer Vision and Pattern Recognition Workshop on Real-Time 3D Sensor and Their Use, , 2004, pp. 29-29, 2004.
[9] S. Roy and I. J. Cox, “A Maximum-Flow Formulation of the N-Camera Stereo Correspondence Problem”, in Proceedings of the Sixth International Conference on Computer Vision, 1998.
[10] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy Minimization via Graph Cuts”, IEEE transactions on pattern analysis and machine intelligence, pp. 1222-1239, 2001.
[11] J. Sun, N.-N. Zheng and H.-Y. Shum, “Stereo Matching Using Belief Propagation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 7, July 2003.
[12] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-time global stereo matching using hierarchical belief propagation”, in Proceedings of The British Machine Vision Conference, 2006.
[13] Kurt Konolige, “Small Vision Systems: Hardware and Implementation”, Artificial Intelligence Center, SRI International, 1997.
[14] M. Hariyama, T. Takeuchi, and M. Kameyama, “VLSI processor for reliable stereo matching based on adaptive window-size selection”, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, 2001.
[15] N. Otsu, “A threshold selection method from gray level histogram”, IEEE Transactions on Systems, Man, and Cybernetics, SMC-8, Vol.9(1), pp. 62-69, 1978.
[16] H. Flatt, S. Blume, S. Hesselbarth, T. Schünemann, P. Pirsch , “A Parallel Hardware Architecture for Connected Component Labeling Based on Fast Label Merging”, Application-Specific Systems, Architectures and Processors, pp. 144-149, 2008.
[17] Ching-Han Chen, Jia-Hong Dai, “Design and High-Level Synthesis of Discrete-Event Controller”, National Conference of Automatic Control and Mechtronics System. Taiwan, R.O.C., pp. 75-80. , 2002.
[18] Mayer, R.J., “IDEF0 Function Modeling”, Air Force Systems Command, May ,
1992.
[19] David, R, “Grafcet :A powerful tool for specification of logic controllers”, IEEE Trans on control systems technology, Vol.3, No 3, pp253-268, 1995.
[20] G. Minglun and Y. Yee-Hong, “Near real-time reliable stereo matching using programmable graphics hardware”, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.1, pp. 924-931, 2005
[21] L. Jiangbo, G. Lafruit, and F. Catthoor, "Fast Variable Center-Biased Windowing for High-Speed Stereo on Programmable Graphics Hardware," in Proceedings of IEEE International Conference on Image Processing, pp. VI - 568-VI – 571, 2007.
[22] O. Veksler, “Fast variable window for stereo correspondence using integral images”, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.1, pp. I-556-I-561, 2003.
指導教授 陳慶瀚(Ching-han Chen) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明