博碩士論文 975205006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:35.175.212.130
姓名 陳秋玉(Chiu-yu Chen)  查詢紙本館藏   畢業系所 軟體工程研究所
論文名稱 利用指定功能軌跡的滑鼠特徵分析以提升識別率
(A feasibility study on using mouse dynamics of a specific operation in a general application to improve the accuracy of user verification)
相關論文
★ 基於最大期望算法之分析陶瓷基板機器暗裂破片率★ 基於時間序列預測的機器良率預測
★ 基於OpenPose特徵的行人分心偵測★ 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果
★ 一種結合循序向後選擇法與回歸樹分析的瑕疵肇因關鍵因子擷取方法與系統-以紡織製程為例★ 以元件式概念為基礎設計建立的XBRL示範性平台
★ 應用方位感測器之手機使用者識別機制★ 基於加速度及方位感測器之智慧型手機動態動作識別機制
★ 以組合專精型多分類器於財務危機預測之研究★ 結合領域知識與機器運算之新的特徵選取方法: 應用於財務危機預警預測之問題
★ 一種新的非侵入式識別機制使用駕駛者的上半身骨架角度:基於動態及直方圖方法★ 基因演算法運用於特徵挑選解決財務危機預測問題
★ 基於方位感測器與觸控螢幕之智慧型手機非侵入式多模組識別機制★ 非侵入式多模組之手機使用者識別機制 :基於動態方法
★ 多分類器組合應用於財務危機預測★ 漸進式模型應用於財務危機預測問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於多元化的資訊發展與環境,盜用他人的帳號密碼執行不合法的犯罪行為頻傳,顯示過去採取一次性登入(single sign-on)做為電腦系統安全認證的方式已經不敷使用。因此,許多學者分別提出以滑鼠操作軌跡(Trajectory)為基礎的辨識/識別技術做為輔助。目前主要區分成Histogram與Mouse Dynamics兩類技術。然而,Histogram的辨識/識別能力會受到應用程式與工作環境的影響。Mouse Dynamics的部分,則因為過去的軌跡樣本收集方式,一部份會中斷使用者的正常工作;另一部分則是大量收集各種軌跡資料,其內容複雜且經常包含無辨識能力或影響辨識/識別的雜訊問題。因此,本團隊提出收集—指定應用程式且指定功能—的滑鼠操作軌跡的方式以純化樣本資料並提高識別的準確率。
摘要(英) In recent years, with the popularization of computer and network, the single sign-on approach of the tradition authentication mechanism may not enough to protect our cyber assets in the future since the illegal cybercrimes access is still on the increase. Consequently, many researchers propose a re-authentication concept that uses the mouse dynamics to verify the user’’s identity.
At the present time, mouse trajectories were collected from all applications or a specified application (such as Internet Explorer) for implementing verification models. However, the mouse trajectories include many types of activity and noise that will affect the verification accuracy. Therefore, this thesis proposes a method that only obtains the specific mouse trajectories to category trajectories and to filter noise for improving the verification accuracy of the implemented models. To prove the proposed method, this thesis conducts experiments to compare the verification rate from three types of trajectories collection. The experiment results show that the accuracy of the proposed method is better than the others. The successful verification rate in our model is 94%. This thesis technique can be applied to existing environmental and upgrade computer security.
關鍵字(中) ★ 特徵萃取
★ 滑鼠特徵
★ 識別使用者
★ 分類器
關鍵字(英) ★ Mouse Dynamics
★ feature extraction
★ classifier
★ user verification
論文目次 中文摘要-----------------------------I
ABSTRACT-----------------------------II
誌謝---------------------------------III
目錄---------------------------------IV
圖目錄-------------------------------VI
表目錄-------------------------------VIII
第一章 緒論-------------------------1
1-1 前言-------------------------1
1-2 研究動機---------------------3
1-3 研究目的---------------------3
1-4 論文架構---------------------4
第二章 文獻探討---------------------5
第三章 實驗設計---------------------9
3-1 資料收集---------------------9
3-2 軌跡資料前置處理-------------10
3-2-1軌跡資料分類------------10
3-2-2開啟檔案的軌跡定義------11
3-2-3資料轉換----------------13
3-3 系統建模(SYSTEM MODELING)----14
3-3-1抽樣方式----------------15
3-3-2特徵萃取----------------16
3-3-3分類器(CLASSIFIER)------18
3-3-4模型(MODELS)訓練與測試--25
第四章 實驗結果與分析---------------27
第五章 研究結論與未來展望-----------32
5-1 結論-------------------------32
5-2 未來展望---------------------32
參考文獻-----------------------------34
附錄一-------------------------------37
參考文獻 [1]A. A. E. Ahmed, I. Traore, “A Statistical Model for Biometric Verification”, pp. 141-161, May, 2006, available from: http://www.isot.ece.uvic.ca/publications/behavioral-biometrics/chapter07-3.pdf
[2]A. A. E. Ahmed, I. Traore, “A New Biometric Technology Based on Mouse Dynamics”, IEEE Trans. on Dependable and Secure Computing, vol. 4, no. 3, pp. 165-179, July-September, 2007.
[3]C.-C. Chang, C.-J. Lin, “LIBSVM -- A Library for Support Vector Machines Version 2.91”, 2010, available from: http://www.csie.ntu.edu.tw/~cjlin/
[4]K.-T. Chen, H.-K. Pao, H.-C. Chang, "Game Bot Identification Based on Manifold Learning", 7th Workshop on Network and Systems Support for Games (NetGames), Worcester, Massachusetts, USA, pp. 21-22, Oct. 2008.
[5]K.-T. Chen, A. Liao, H.-K. Pao, H.-H. Chu, "Game Bot Detection Based on Avatar Trajectory", 7th International Conference on Entertainment Computing, Pittsburgh, USA, pp. 25 - 27, Sep. 2008.
[6]R. A.J. Everitt, P. W. McOwan, “Java-Based Internet Biometric Authentication System”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, pp. 1166-1172, 2003.
[7]S. Furnell, N. Clarke, “Biometrics: no silver bullets”, Computer Fraud & Security, pp. 9-14, Aug. 2005.
[8]H. Gamboa, A. Fred, “A behavior biometric system based on human-computer interaction”, Proceedings of SPIE, vol. 5040, pp. 381-392, Aug. 2004.
[9]V. M. Jr., Z. Riha, “Toward reliable user authentication through biometrics”, IEEE Security and Privacy, vol. 1, no. 3, pp. 45-49, May 2003.
[10]S. Lin, K. Ying, S. Chen, Z. Lee,” Particle swarm optimization for parameter determination and feature selection of support vector machines”. Expert system with applications. vol.35, no.4, pp.1817-1824, 2008.
[11]A. Nazar, I. Traore, A. A. E. Ahmed, “Inverse Biometrics for Mouse Dynamics”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 22, no. 3, pp. 461-495, 2008.
[12]M. Pusara, C. E. Brodley, “User re-authentication via mouse movements”, Proc. ACM Workshop Visualization and Data Mining for Computer Security (VizSEC/DMSEC'04), Washington, DC, USA, pp. 1-8, Oct. 29 2004.
[13]K. Revett, H. Jahankhani, S. T. de Magalhães, H. M.D. Santos, “A Survey of User Authentication Based on Mouse Dynamics”, Communications in Computer and Information Science (Global E-Security), vol. 12, pp. 210-219, 2008.
[14]C. Shen, Z. Cai, X. Guan, H. Sha, J. Du, “Feature Analysis of Mouse Dynamics in Identity Authentication and Monitoring”, IEEE International Conference on Communications (ICC '09), pp. 1-5, 2009.
[15]T. Sim, S. Zhang, R. Janakiraman, S. Kumar, “Continuous Verification Using Multimodal Biometrics”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 687-700, April 2007.
[16]A. F. Syukri, E. Okamoto, M. Mambo, “A User Identification System Using Signature Written with Mouse”, Lecture Notes in Computer Science (Information Security and Privacy) (ACISP'98), vol. 1438, pp. 403-414, 1998.
[17]M. Sugiyama, “Local Fisher discriminant analysis for supervised dimensionality reduction”, Proceedings of 23rd International Conference on Machine Learning , pp. 905-912, Jun. 2006b.
[18]M. Sugiyama, “Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis”, Journal of Machine Learning Research, vol.8, pp. 1027-1061, May 2007.
[19]J. Tenenbaum, V. de Silva, and J. Langford, “A Global Geometric Framework for Nonlinear Dimensionality Reduction,” Science, 290(5500), pp. 2319-2323, December 2000.
[20]K. Hayashi, E. Okamoto, and M. Mambo,” Proposal of User Identification Scheme Using Mouse”, in ICICS’97: Proceedings of the First International Conference on Information and Communication Security, PP.144-148, 1997.
[21]K.-H. Tang, Y.-H. Lee, “Dynamic Mouse Speed Scheme Design Based on Trajectory Analysis”, Lecture Notes in Computer Science (Ergonomics and Health Aspects of Work with Computers) (HCII 2007), vol. 4566, pp. 329-338, 2007.
[22]K. Revett, “Behavioral Biometrics: A Remote Access Approach”, John Wiley & Sons, Ltd. , 2008.
[23]A. Weiss, A. Ramapanicker, P. Shah, S. Noble, L. Immohr, “Mouse Movements Biometric Identification: A Feasibility Study”, Proceedings of Student/Faculty Research Day, CSIS, Pace University, pp. 1-8, May 4th, 2007.
指導教授 梁德容(Deron Liang) 審核日期 2010-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明