博碩士論文 975301005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.119.102.137
姓名 戴邦傑(Pong-Kit Tai)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 使用於生醫訊號的三角積分調變器
(Sigma-Delta Modulator for Biomedical Signal Processing)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
最近,快速成長的生物醫學電子市場,需要低功耗和低電壓[1],[2]。由於電池用於可擕式生物設備最多。通過低功耗的結構使電池壽命延長是非常重要的。如在數位助聽器應用中,通常是由電池鋅空氣,並應提供10小時或至少兩個星期的使用壽命[3]。此外,數位助聽器寬動態範圍的要求,高性能,更可編程性和小型化。因此,要實現低功耗,高性能和可編程性,擴大電池壽命,並提供給用戶方便。
由於低振幅的生物醫學信號,高解析度和低功耗的類比至數位轉換器(ADC)非常重要。 Σ-△調製器在解析度和功耗性都能好。在這篇論文中,Σ-Δ調製器(SDM)使用在生物醫學電子系統。基本上,開關電容(SC)的技術和前饋(FF)的技術可同時實現在SDM的。這次的SDM是用台積電0.18um 1P6M CMOS技術來實現。信號寬為10 kHz,其取樣時鐘頻率為2.56 MHz的即過採樣比(OSR)是等於128。因此,它可以實現信號與雜訊及失真比(SNDR)為75.75分貝,高於10位元解析度。此外,功率消耗約為358uW, 在12位解析度下運行和動態範圍是85分貝和1.8V電源供應下。
基本上,SDM的ADC具有一個類比SDM和一個數位取樣濾波器。因此,我們可以整合兩個SDM與一個數字取樣濾波器。然後我們就可以輕鬆地監測2個生物醫學信號和保存了整個晶片的面積。
最近,快速成長的生物醫學電子市場,需要低功耗和低電壓。本文所設計之電路是使用三角積分調變器 (SDM)作為生物醫學電子用途。基本上,開關電容(SC)技術和向前回饋(FF)技術也可以同時被使用。本文對SDM進行模擬和以台積電 0.18微米1P6M CMOS製程技術來實現。此外輸入信號頻寬為 0〜10千赫時。取樣時脈速率為 2.56兆赫即(OSR)是等於 128。信號與雜訊及失真比(SNDR)為75.75分貝。二階三角積分調變器(SDM)的模擬結果是大於10位元的分辨率。在12位元的分辨率運行下功率消耗約 358uW。在1.8V的電源供應下,有85dB的動態範圍。
摘要(英) Abstract
Recently, the rapid expansion of the biomedical-electronic market has necessitated low-power and low-voltage biomedical systems [1], [2]. Since battery power is used for most of the portable biomedical devices. Expanding battery lifetime through the topology of low power dissipation systems is very crucial. In the digital hearing-aid applications, the battery is typically made of zinc–air and should offer a life span of at least two weeks at 10 hours use per day [3]. Moreover, the digital hearing aid requires wide dynamic range, high performance, more programmability, and small form factor. Hence, it is necessary to achieve low power dissipation, high performance, and programmability to expand battery lifetime and to offer convenient hearing to the users.
Due to low-amplitude and non-stationary properties of biomedical signals, high resolution and low-power consumption are necessary for the analog-to-digital (A/D) convector (ADC). Sigma-Delta Modulator has good performance in the resolution and power consumption. In this thesis, Sigma-Delta Modulator (SDM) for a biomedical electronic system is proposed. Basically, the switched-capacitor (SC) technique and the Feedforward(FF) technique can be used to implement SDM. The proposed SDM was simulated with TSMC 0.18 ?m 1P6M CMOS technologies. The signal bandwidth is 10 KHz and its clock rate is 2.56 MHz i.e. the over-sampling ratio (OSR) is equal to 128. Hence, it can achieve 75.75 dB signal-to-noise and distortion ratio (SNDR), and higher than 10 bits resolution in 2nd orders SDM. Moreover, the power consumption is about 358 ?W in 12 bits resolution under normal operation and the dynamic range is 85 dB with a single 1.8V power supply.
Basically, an SDM ADC consists of an Analog SDM and Digital Decimation filter. Therefore, we can take the advantage of low power consumption of the implanted SDM to integrate two SDM adaptively with one digital decimation filter. Then we can easily to monitor 1 or 2 biomedical signals at the sample time and save the total chip area.
關鍵字(中) ★ 三角積分調變器
★ 生醫訊號
關鍵字(英) ★ Biomedical Signal
★ Sigma-Delta Modulator
論文目次 Contents
摘要…………………………………………………………….v
Abstract………………………………………………………….vi
致謝……………………………………………………………vii
List of figures………………...………………………………….xi
List of tables……………………………….…………………..xiii
Chapter 1 Introduction……………………………………1
1-1 Introduce…………………………………………....1
1-2 Structure of Thesis………………………………….2
Chapter 2 Basic Theories of an SDM………………….…3
2-1 Nyquist-Rate Data Conversion……………………..3
2-2 Quantization error…………………………………..7
2-3 Over-Sampling Topology…………………………11
2-4 Noise Shaping Topology………………………….13
2-5 1st order Sigma Delta Modulator………………….15
2-6 2nd order Sigma Delta Modulator…………………17
2-7 High order Sigma Delta Modulator……………….19
Chapter 3 System Design and simulation…….………...23
3-1 System design flow plan…………………………..26
3-2 Sigma Delta Modulator System Model…………...27
3-3 System simulation…………………………………28
3-4 System parameters on the circuitdesign…….…….32
Chapter 4 Implement and design of SDM………….…..40
4-1 System design and implement………….…………40
4-2 Switch Cap mode integrator technique……………44
4-2.1 The topology of integrator design, it will not be effected by parasitic cap ……………..…….....44
4-2.2 Op Amplify design……………………………45
4-2.3 Comparator design…………………………….52
4-2.4 Clock Generator design……………………….53
4-2.5 Circuit simulation result………………………55
Chapter 5 Layout planning and Measurement …….….60
5-1 Layout planning and Considering…………….…..60
5-2 Measurement Considering………………………...61
5-2.1 PCB design……………………………………61
5-2.2 Instrument issues for measurement……….…..63
5-3 Measurement Result……………………………....65
Chapter 6 Conclusions and Future works……………..69
6-1 Conclusions………………………………..……...69
6-2 Future works………………………………………69
Reference Paper……………………………………………...70
參考文獻 Reference Paper
[1] K. Y. Nam, S. M. Lee, D. K. Su and B. A. Wooley, "A Low-Voltage Low-Power Sigma-Delta Modulator for Broadband Analog-to-Digital Conversion," IEEE J. Solid-State Circuits, vol. 40, pp. 1855-1864, Sep 2005.
[2] V. Peluso, P. Vancorenland, A. M. Marques, M. S. J. Steyaert and W. Sansen, "A 900-mV Low-Power A/D Converter with 77-dB Dynamic Range," IEEE J. Solid-State Circuits, vol. 33, pp. 1887-1897, Dec 1998.
[3] E. López-Morillo, R. G. Carvajal, F. Muñoz, H. El Gmili, A. Lopez-Martin, J. Ramírez-Angulo and E. Rodríguez-Villegas, "A 1.2-V 140-nW 10-bit Sigma–Delta Modulator for Electroencephalogram Applications," IEEE transaction on biomedical circuits and systems, vol. 2, 2008.
[4] D. A. Johns and K. Martin, Analog Integrated Circuit Design: John Wiley and Sons, 1997.
[5] B. V. Amini and F. Ayazi, "A 2.5-V 14-bit ΣΔ CMOS SOI Capacitive Accelerometer," IEEE J. of Solid-State Circuits, vol. 39, December 2004.
[6] Analog Devices Inc. (2010, AD7720 CMOS sigma-delta modulator. Available: http://www.analog.com
[7] S. R. Norsworthy, R. Schreier and G.C. Temes, "Delta-Sigma Data Converters," IEEE Press, 1997.
[8] A. Boni, "Op-amps and startup circuits for CMOS bandgap references with near 1-V supply," IEEE J. Solid-State Circuits, vol. 37, Dec 2002.
[9] P. Ferguson, A. Ganesan and R. Adams, "One bit higher order sigma-delta ADC based on data weighted averaging," Proc. 1990 IEEE Int. Symp. Circuit Syst., May 1990.
[10] S. Brigati, F. Francesconi, P. Malcovati and F. Maloberti, "A fourth-order single-bit switch-capacitor sigma-delta modulator for distributed sensor applications," presented at the IEEE Instumentation and Measurement Technology Conference Anchorage, AK, USA, 2002.
[11] I. Fujimori, L. Longo and A. Hairapetian., "A 90-dB SNR 2.5-MHz output rate ADC using cascaded multi-bit delta-sigma modulation at 8x over-sampling ratio," IEEE J. of Solid-State Circuits, vol. 35, December 2000.
[12] Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M. Ishikawa and T. Yoshitome, "A 16-bit over-sampling A-to-D conversion technology using triple-integration noise shaping," IEEE J. of Solid-State Circuits, vol. SC-22, December 1987.
[13] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters: John Wiley and Sons, 2005.
[14] C. M. Hsu, T. C. Yo and C. H. Luo., "An Ultra-Low Power Variable-Resolution Sigma-Delta Modulator for Signals Acquisition of Biomedical Instrument," IEICE trans. Electron, vol. E90-C, December 2007.
[15] J. Goes, N. Paulino, H. Pinto, R. Monteiro Bruno Vaz and A. S. Garcao., "Low-Power Low-Voltage CMOS A/D Sigma-Delta Modulator for Bio-Potential Signals Driven by a Single-Phase Scheme," IEEE transaction on circuits and systems, vol. 52, 2005.
[16] A. Gerosa and A. Neviani, "A 1.8-μW Sigma–Delta Modulator for 8-Bit Digitization of Cardiac Signals in Implantable Pacemakers Operating Down to 1.8 V," IEEE trans Circuits Syst II, vol. 52, FEBRUARY 2005.
[17] H. Y. Lee, C. M. Hsu, S. C. Huang, Y.W. Shih and C. H. Luo, "Designing low power of sigma delta modulator for biomedical application," Biomed. Eng. Applicat., Basis, Commun, pp. 181-185, August 2005.
[18] H. Y. Yang and R. Sarpeshkar, "A bio-inspired ultra-energy-efficient analog-to-digital converter for biomedical applications," IEEE Trans.Circuits Syst., Reg. Papers, vol. 53, pp. 2349-2356, Nov 2006.
[19] S. Y. Lee and C. J. Cheng, "A low-voltage and low-power adaptive switched- current sigma–delta ADC for bio-acquisition microsys-tems," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, pp. 2628-2636, Dec 2006.
[20] A. Agah, K. Vleugels, P. B. Griffin, M. Ronaghi, J. D. Plummer and B. A.Wooley, "A high-resolution low-power over-sampling ADC with ex-tended-range for Bio- sensor arrays," presented at the 2007 IEEE VLSI Circuits Symp, 2007.
[21] J. Dunn, Measurement Techniques for Digital Audio: Audio Precision, Inc., 2003.
[22] R. J. Baker, H. W. Li and D. E. Boyce, “CMOS Circuit Design, Layout, and Simulation”, John Wiley and Sons (formerly IEEE Press), Second Edition.
[23] C. H. Kuo, “Delta-Sigma Analog-to-Digital Converters”
[24] T. H. Kuo, “High-Resolution Sigma-Delta Over-sampling Converters”
[25] C. H. Su, “Design of Over sampled Sigma-Delta Data Converters”
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2010-12-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明