參考文獻 |
[1] A. Haddoun, M. E. H. Benbouzid, D. Diallo, R. Abdessemed, J. Ghouili, and K. Srairi, “Modeling, analysis, and neural network control of an EV electrical differential,” IEEE Trans. Indust. Electron., vol. 55, no. 6, pp. 2286-2294, 2008.
[2] Photographs from official websites as follows:
Cadillac ELR: http://www.cadillac.com/future-cars/elr-electric-car.html
Chevrolet Spark EV: http://www.chevrolet.com/spark-ev-electric-vehicle.html
Chevrolet Volt: http://www.chevrolet.com/2012-volt-electric-car.html
Ford Focus Electric: http://www.ford.com/cars/focus/trim/electric/
Honda Accord Plug-In, Honda Civic Hybrid, and Honda Fit EV:
http://automobiles.honda.com/alternative-fuel-vehicles/
Lexus GS450h: http://www.lexus.com.tw/hybrid.aspx
Luxgen EV+: http://www.luxgen-motor.com.tw/ev.html
Mini E: http://www.miniusa.com/minie-usa/
Mitsubishi iMiEV and Mitsubishi Outlander PHEV:
http://www.mitsubishi-motors.co.jp/
Nissan LEAF: http://www.nissanusa.com/electric-cars/leaf/
Porsche Cayenne S Hybrid and Porsche Panamera S E Hybrid:
http://www.porsche.com/usa/models/
Smart EV: http://int.smart.com/
Toyota Camry Hybrid, Toyota Prius, and Toyota Prius Plug-In:
http://www.toyota.com/
Volvo XC60 Plug-In Hybrid: http://www.volvocars.com/intl/Pages/default.aspx
[3] Q. Huang, Z. Huang, and H. Zhou, “Nonlinear optimal and robust speed control for a light-weighted all-electric vehicle,” IET Control Theory Appl., vol. 3, no. 4, pp. 437-444, 2007.
[4] B. C. Chen, C. C. Yu, W. S. Lee, and W. F. Hsu, “Design of an electric differential system for three-wheeled electric welfare vehicles with driver-in-the-loop verification,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1498-1505, 2007.
[5] Y. Hori, “Future vehicle driven by electricity and control — research on four-wheel-motored “UOT Electric March II”,” IEEE Trans. Indust. Electron., vol. 51, no. 5, pp. 954-962, 2004.
[6] F. J. Perez-Pinal, I. Cervantes, and A. Emadi, “Stability of an electric differential for traction applications,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3224-3233, 2009.
[7] X. D. Xue, K. W. E. Cheng, T. W. Ng, and N. C. Cheung, “Multi-objective optimization design of in-wheel switched reluctance motors in electric vehicles,” IEEE Trans. Indust. Electron., vol. 57, no. 9, pp. 2980-2987, 2010.
[8] J. Wang, K. Atallah, Z. Q. Zhu, and D. Howe, “Modular three-phase permanent-magnet brushless machines for in-wheel applications,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 2714-2720, 2008.
[9] C. Geng, L. Mostefai, M. Denaï, and Y. Hori, “Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer,” IEEE Trans. Indust. Electron., vol. 56, no. 5, pp. 1411-1419, 2009.
[10] R. Miucic, S. M. Mahmud, and Z. Popovic, “An enhanced data-reduction algorithm for event-triggered networks,” IEEE Trans. Veh. Technol., vol. 58, no. 6, pp. 2663-2678, 2009.
[11] F. J. Lin, R. J. Wai, and H. P. Chen, “A PM synchronous servo motor drive with an on-line trained fuzzy neural network controller,” IEEE Trans. Energy Conver., vol. 13, no. 4, pp. 319-325, 1998.
[12] J. C. Salmon and B. W. Williams, “A split-wound induction motor design to improve the reliability of PWM inverter drives,” IEEE Trans. Indust. Appl., vol. 26, no. 1, pp. 143-150, 1990.
[13] R. O. C. Lyra and T. A. Lipo, “Torque density improvement in a six-phase induction motor with third harmonic current injection,” IEEE Trans. Indust. Appl., vol. 38, no. 5, pp. 1351-1360, 2002.
[14] H. Zhang, A. Jouanne, S. Dai, K. Wallace, and F. Wang, “Multilevel inverter modulation schemes to eliminate common-mode voltages,” IEEE Trans. Indust. Appl., vol. 36, no. 6, pp. 1645-1653, 2000.
[15] S. Green, D. J. Atkinson, A. G. Jack, B. C. Mecrow, and A. King, “Sensorless operation of a fault tolerant PM drive,” IEE Proc. Electr. Power Appl., vol. 150, no. 2, pp. 117-125, 2003.
[16] B. Stumberger, G. Stumberger, A. Hamler, M. Trlep, M. Jesenik, and V. Gorican, “Increasing of output power capability in a six-phase flux-weakened permanent magnet synchronous motor with a third harmonic current injection,” IEEE Trans. Magnet., vol. 39, no. 5, pp. 3343-3345, 2003.
[17] Y. Izumikawa, K. Yubai, and J. Hirai, “Fault-tolerant control system of flexible arm for sensor fault by using reaction force observer,” IEEE/ASME Trans. Mechatr., vol. 10, no. 4, pp. 391-396, 2005.
[18] M. E. H. Benbouzid, D. Diallo, and M. Zeraoulia, “Advanced fault-tolerant control of induction-motor drives for EV/HEV traction applications: from conventional to modern and intelligent control techniques,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 519-528, 2007.
[19] R. Kianinezhad, B. Nahid-Mobarakeh, L. Baghli, F. Betin, and G. Capolino, “Modeling and control of six-phase symmetrical induction machine under fault condition due to open phases,” IEEE Trans. Indust. Appl., vol. 55, no. 5, pp. 1966-1977, 2008.
[20] M. A. Fnaiech, F. Betin, G. Capolino, and F. Fnaiech, “Fuzzy logic and sliding-mode controls applied to six-phase induction machine with open phases,” IEEE Trans. Indust. Appl., vol. 57, no. 1, pp. 354-364, 2010.
[21] S. Dwari and L. Parsa, “Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF,” IEEE Trans. Indust. Electron., vol. 58, no. 2, pp. 476-485, 2011.
[22] X. L. Wang, Q. C. Zhong, Z. Q. Deng, and S. Z. Yue, “Current-controlled multiphase slice permanent magnetic bearingless motors with open-circuited phases: fault-tolerant controllability and its verification,” IEEE Trans. Indust. Electron., vol. 59, no. 5, pp. 2059-2072, 2012.
[23] X. Huang, T. G. Habetler, and R. G. Harley, “Detection of rotor eccentricity faults in a closed-loop drive-connected induction motor using an artificial neural network,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1552-1559, 2007.
[24] A. Sadeghian, Z. Ye, and B. Wu, “Online detection of broken rotor bars in induction motors by wavelet packet decomposition and artificial neural networks,” IEEE Trans. Instrument. Measure., vol. 58, no. 7, pp. 2253-2263, 2009.
[25] W. W. Tan and H. Huo, “A generic neurofuzzy model-based approach for detecting faults in induction motors,” IEEE Trans. Indust. Electron., vol. 52, no. 5, pp. 1420-1427, 2005.
[26] J. Quiroga, D. A. Cartes, C. S. Edrington, and L. Liu, “Neural network based fault detection of PMSM stator winding short under load fluctuation,” in Proc. Int. Power Electron.Motion Control Conf., pp. 793-798, 2008.
[27] V. N. Ghate and S. V. Dudul, “Cascade neural-network-based fault classifier for three-phase induction motor,” IEEE Trans. Indust. Electron., vol. 58, no. 5, pp. 1555-1563, 2011.
[28] M. Seera, P. L. Chee, D. Ishak, and H. Singh, “Fault detection and diagnosis of induction motors using motor current signature analysis and a hybrid FMM–CART model,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 1, pp. 97-108, 2012.
[29] L. X. Wang, A course in fuzzy systems and control. Prentice-Hall Press, 1997.
[30] F. J. Lin, W. J. Hwang, and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 41-52, 1999.
[31] S. Cong and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Trans. Indust. Electron., vol. 56, no. 10, pp. 3872-38795, 2009.
[32] Y. M. Park, M. S. Choi, and K. Y. Lee, “An optimal tracking neurocontroller for nonlinear dynamic systems,” IEEE Trans. Neural Netw., vol. 7, no. 5, pp. 1099-1110, 1996.
[33] T. Orlowska-Kowalska, M. Dybkowski, and K.Szabat, “Adaptive sliding-mode neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors,” IEEE Trans. Indust. Electron., vol. 57, no. 2, pp. 553-564, 2010.
[34] W. Yu and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, 2004.
[35] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezoactuator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, no. 9, pp. 1649-1661, 2006.
[36] M. J. Er and C. Deng, “Obstacle avoidance of a mobile robot using hybrid learning approach,” IEEE Trans. Indust. Electron., vol. 52, no. 3, pp. 898-905, 2005.
[37] Y. Gao and M. J. Er, “An intelligent adaptive control scheme for postsurgical blood pressure regulation,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 475-483, 2005.
[38] F. J. Lin and P. H. Shen, “Robust fuzzy neural network sliding-mode control for two-axis motion control system,” IEEE Trans. Indust. Electron., vol. 53, no. 4, pp. 1209-1225, 2006.
[39] F. J. Lin, P. K. Huang, C. C. Wang, and L. T. Teng, “An induction generator system using fuzzy modeling and recurrent fuzzy neural network,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260-271, 2007.
[40] F. J. Lin, P. H. Shieh, and P. H. Chou, “Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network,” IEEE Trans. Fuzzy Syst., vol. 16, no. 3, pp. 672-692, 2008.
[41] A. Gajate, R. E. Haber, P. I. Vega, and J. R. Alique, “A transductive neuro-fuzzy controller: application to a drilling process,” IEEE Trans. Neural Netw., vol. 21, no. 7, pp. 1158-1167, 2010.
[42] C. H. Lu, “Wavelet fuzzy neural networks for identification and predictive control of dynamic systems,” IEEE Trans. Indust. Electron., vol. 58, no. 7, pp. 3046-3058, 2011.
[43] R. J. Lian, “Intelligent controller for robotic motion control,” IEEE Trans. Indust. Electron., vol. 58, no. 11, pp. 5220-5230, 2011.
[44] C. S. Chen, “Supervisory interval type-2 TSK neural fuzzy network control for linear microstepping motor drives with uncertainty observer,” IEEE Trans. Power Electron., vol. 26, no. 7, pp. 2049-2064, 2011.
[45] F. J. Lin, P. H. Chou, C. S. Chen, and Y. S. Lin, “DSP-based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode control,” IEEE Trans. Indust. Electron., vol. 59, no. 2, pp. 1061-1073, 2012.
[46] H. Chaoui and P. Sicard, “Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction,” IEEE Trans. Indust. Electron., vol. 59, no. 2, pp. 1123-1133, 2012.
[47] M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kaynak, “Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation,” IEEE Trans. Indust. Electron., vol. 59, no. 11, pp. 4443- 4455, 2012.
[48] R. J. Wai and L. C. Shih, “Adaptive fuzzy-neural-network design for voltage tracking control of a dc-dc boost converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2104–2115, 2012.
[49] C. L. Tseng, S. Y. Wang, S. C. Chien, and C. Y. Chang, “Development of a self-tuning TSK-fuzzy speed control strategy for switched reluctance motor,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2141-2152, 2012.
[50] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782-3794, 2012.
[51] H. Y. Pan, C. H. Lee, F. K. Chang, and S. K. Chang, “Construction of asymmetric type 2 fuzzy membership function and application in time series prediction,” in Proc. Int. Conf. Machine Learn. and Cybern., pp. 2024-2030, 2007.
[52] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric gaussian membership functions,” IEEE Trans. Indust. Electron., vol. 54, no. 3, pp. 1528-1536, 2004.
[53] C. H. Lee, T. W. Hu, C. T. Lee, and Y. C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proc. IEEE Int. Fuzzy Syst. Conf., pp. 1496-1502, 2008.
[54] D. F. Specht, “Probabilistic neural network,” Neural Netw., vol. 3, no. 1, pp. 190-118, 1990.
[55] E. Parzen, “On estimation of a probability density function and mode,” Ann. Math Statist., vol. 33, pp. 1065-1076, 1962.
[56] K. Z. Mao, K. C. Tan, and W. Ser, “Probabilistic neural-network structure determination for pattern classification,” IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 1009-1016, 2000.
[57] J. C. Pidre, C. J. Carrillo, and A. E. F. Lorenzo, “Probabilistic model for mechanical power fluctuations in asynchronous wind parks,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 761-768, 2003.
[58] M. Tripathy, R. P. Maheshwari, and H. K. Verma, “Power transformer differential protection based on optimal probabilistic neural network,” IEEE Trans. Power Del., vol. 25, no. 1, pp. 102-112, 2010.
[59] A. H. Meghdadi, T. Akbarzadeh, and R. Mohammad, “Probabilistic fuzzy logic and probabilistic fuzzy systems,” in Proc. IEEE Int. Fuzzy Syst. Conf., vol. 3, pp. 1127-1130, 2001.
[60] Z. Liu and H. X. Li, “A probabilistic fuzzy logic system for modeling and control,” IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848-859, 2005.
[61] H. X. Li and Z. Liu, “A probabilistic neural-fuzzy learning system for stochastic modeling,” IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 898-908, 2008.
[62] J. J. E. Slotine and W. Li, Applied nonlinear control. Prentice-Hall, NJ, 1991.
[63] F. Esfandiari and H. K. Khalil, “Stability analysis of a continuous implementation of variable structure control,” IEEE Trans. Automatic Control, vol. 36, no. 5, pp. 616-620, 1991.
[64] S. N. Huang, K. K. Tan, and T. H. Lee, “Sliding-mode monitoring and control of linear drives ” IEEE Trans. Indust. Electron., vol. 56, no. 9, pp. 3532-3540, 2009.
[65] X. Yu and O. Kaynak, “Sliding-mode control with soft computing: a survey,” IEEE Trans. Indust. Electron., vol. 56, no. 9, pp. 3275-3285, 2009.
[66] B. Beltran, T. Ahmed-Ali, and M. Benbouzid, “High-order sliding-mode control of variable-speed wind turbines,” IEEE Trans. Indust. Electron., vol. 56, no. 9, pp. 3314-3321, 2009.
[67] B. Veselic, B. Perunicic-Drazenovic, and C. Milosavljevic, “Improved discrete-time sliding-mode position control using Euler velocity estimation,” IEEE Trans. Indust. Electron., vol. 57, no. 11, pp. 3840-3847, 2010.
[68] H. M. Chen, J. P. Su, and J. C. Renn, “A novel sliding mode control of an electrohydraulic position servo system,” IEICE Trans. Fundamentals, vol. E85-A, no. 8, pp. 1928-1936, 2002.
[69] J. P. Su and C. C. Wang, “Complementary sliding control of non-linear system,” Int. J. Control, vol. 75, no. 5, pp. 360-368, 2002.
[70] C. Y. Liang and J. P. Su, “A new approach to the design of a fuzzy sliding mode controller,” Fuzzy Sets and Systems, vol. 139, pp. 111-124, 2003.
[71] F. J. Lin, J. C. Hwang, P. H. Chou, and Y. C. Hung, “FPGA-based intelligent complementary sliding mode control for PMLSM servo drive system,” IEEE Trans. Power Electron., vol. 25, no. 10, pp. 2573-2587, 2010.
[72] Data Manual, TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs), Texas Instruments Incorporated, 2008.
[73] 吳泰廷,六相永磁式同步電動機驅動系統之故障後控制策略,碩士論文,台灣科技大學電機工程學系,2009年七月。
[74] I. Boldea and S. A. Nasar, Linear electric actuators and generators. London, U.K.: Cambridge Univ. Press, 1997.
[75] J. Larminie and J. Lowry, Electric vehicle technology explained. John Wiley & Sons, Ltd, 2003.
[76] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neuron networks for identification and control of dynamical systems,” IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 306-319, 1994.
[77] F. J. Lin and Y. C. Hung, “FPGA-based Elman neural network control system for linear ultrasonic motor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 1, pp. 101-113, 2009.
[78] S. J. Yoo, Y. H. Choi, and J. B. Park, “Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: Adaptive learning rates approach,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 53, no. 6, pp. 1381-1395, 2006.
[79] R. J. Wai and C. M. Li, “Design of dynamic petri recurrent fuzzy neural network and its application to path-tracking control of nonholonomic mobile robot,” IEEE Trans. Indust. Electron., vol. 56, no. 7, pp. 2667-2683, 2009. |