博碩士論文 975401017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.210.22.132
姓名 吳仕先(Shih-Hsien Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 針對電源完整性應用之帶拒式電源分佈網路合成技術開發
(Synthesis of Bandstop Power Distribution Network for Power Integrity Applications)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 共面波導帶通濾波器之研製
★ 微帶耦合線帶通濾波器與雙工器研製★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製
★ K-Band及Q-Band毫米波帶通濾波器設計★ 薄膜製程射頻被動元件設計
★ 微波帶通低雜訊放大器設計★ 積體式微波帶通濾波器之研製
★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列★ 以多重耦合線實現多功能帶通濾波器
★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統★ 以多重耦合線實現單端至平衡帶通濾波器之分析與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著半導體科技技術的不斷發展,混合信號系統及模組的設計困難度也隨之提高。在面對異質晶片元件的模組整合設計上所需考量的是將不同功能晶片整合在同一系統或模組時必需解決的信號干擾問題,諸如將高速數位處理器、記憶體、射頻電路元件、微機電系統及光電元件等異質功能晶片都整合在同一模組內時,晶片元件之間信號干擾問題將急劇的惡化整個系統或模組的功能。為了將電源提供給同一模組內的元件,在PCB內通常以兩整層導體層作為電源層與接地層,使模組內的元件都能自PCB內的電源層及接地層得到足夠的電源供給。但在獲得電源的同時,這些元件在信號切換過程中所產生的雜訊也會隨著PCB內的電源層與接地層傳遞到其他同一模組的元件上,並造成受干擾元件功能失效的現象。
本論文針對上述電源雜訊問題,提出帶拒式電源分佈網路及其合成技術。於論文中提出兩種帶拒式結構應用於帶拒式電源分佈網路的合成技術,此兩種帶拒式結構分別為共振孔(Resonant Via)帶拒結構及四分之一波長傳輸線帶拒結構。以共振孔帶拒結構所開發出的合成方法可依據帶拒頻寬及帶拒隔離準位的規格要求,決定共振孔帶拒結構的幾何尺寸,加上共振孔帶拒結構具有完整的電源及接地層,因此對於需要嚴謹考量參考電源或接地層的高速信號傳遞需求將相當有助益。四分之一波長傳輸線帶拒結構的使用將可減少對PCB內導體層的要求,因其可實現於電源層或接地層,因此可直接套用在現有電源分佈網路上且只需占有一部分的電源層或接地層空間。藉由四分之一波長傳輸線帶拒結構的帶拒特性及所開發的合成技術,透過實際設計範例的驗證,能在70 dB的雜訊隔離準位下達到1 GHz到40 GHz的超寬頻帶拒頻寬,對於工作於不同頻率的異質晶片元件的整合設計來說,此超寬頻帶拒頻寬的特性將非常具有應用價值。
對於未來電子模組普遍存在的諸如信號的感測、計算及通訊傳遞的功能整合需求,本論文提出的帶拒式電源分佈網路及其合成技術可滿足其模組內電源分佈網路的需要。
摘要(英) With the fast evolution in semiconductor technology, mixed-signal system design is becoming a complex task that involves the heterogeneous integration of functions such as high-speed digital processing, memory, radio frequency circuits, sensors, micro-electro-mechanical systems, and optoelectronic devices. Noise isolation between different devices is thus a key issue in mixed-signal system designs. To deliver dc power to the core circuit, solid conductive layers in multilayered printed circuit boards (PCB) and package substrates are often used as the power delivery network (PDN), while the noise can easily propagate through such a parallel-plate waveguide like PDN.
A bandstop PDN circuit model along with the synthesis method and design equations are proposed in this work. Two bandstop structure, i.e., the resonant via structure and λ/4 line-based structure, are used to realize the proposed bandstop PDN circuit model. With the proposed equivalent-circuit model, design equations and design charts, the geometrical structure of them can be quickly designed according to the desired stopband bandwidth and isolation level. The synthesized bandstop PDN structures have been implemented and verified with circuit simulation, EM simulation, and measurement. A extremely wide stopband from 1.33 GHz to more than 40 GHz with 70 dB isolation is achieved.
With the integration demand of sensing, computing, and communication capabilities in a tightly integrated module, we believe that the proposed bandstop PDN are suitable for offering a low noise PDN in the mixed-signal systems, power integrity and good performance can thus be achieved.
關鍵字(中) ★ 帶止式
★ 電源分布網路
★ 電源完整性
關鍵字(英) ★ Bandstop
★ PDN
★ Power Integrity
論文目次 論文摘要 I
Abstract II
Contents III
List of Figures V
List of Tables XI
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 2
1.3 Contributions 5
1.4 Organization 6
Chapter 2 Bandstop PDN Design Theory 7
2.1 PDN Circuit Model 7
2.2 Design Theory 10
Chapter 3 Bandstop PDN Based on Resonant Vias 16
3.1 Circuit Analysis and Synthesis Procedure 16
3.2 Design Examples 29
3.2.1 Single Stopband Design 29
3.2.2 Dual Stopband Design 39
3.3 Summary 56
Chapter 4 Quarter-Wavelength Line-Based Bandstop PDN 59
4.1 Circuit Analysis and Synthesis Procedure 59
4.2 Design Examples 68
4.3 Summary 87
Chapter 5 Conclusions 89
5.1 Brief Conclusion 89
5.2 Future Work 91
Reference 94
Publication List
參考文獻 [1] I. Novak, L. M. Noujeim, V. S. Cyr, N. Biunno, A. Patel, G. Korony, and A. Ritter, "Distributed matched bypassing for board-level power distribution networks," IEEE Trans. Advanced Packaging, vol.25, no.2, May 2002.
[2] T. E. Moran, K. L. Virga, G. Aguirre, and J. L. Prince, "Methods to reduce radiation from split ground planes in RF and mixed signal packaging structures," IEEE Trans. Advanced Packaging, vol.25, no.3, Aug. 2002.
[3] M. Swaminathan, J. Kim, I. Novak, and J. P. Libous, "Power distribution networks for system-on-package: status and challenges," IEEE Trans. Advanced Packaging, vol.27, no.2, pp. 286-300, May 2004.
[4] T. Kamgaing and O. M. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw. Wireless Compon. Lett., vol.13, no.1, pp. 21-23, Jan. 2003.
[5] T. Kamgaing and O. M. Ramahi, "Design and modeling of high-impedance electromagnetic surfaces for switching noise suppression in power planes," IEEE Trans. Electromagn. Compat., vol.47, no.3, pp. 479-489, Aug. 2005.
[6] T.-L. Wu, Y.-H. Lin, and S.-T. Chen, "A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures," IEEE Microw. Wireless Compon. Lett., vol.14, no. 7, pp. 337-339, July 2004.
[7] K.-H. Kim and J. E. Schutt-Aine, "Design of EBG power distribution networks with VHF-band cutoff frequency and small unit cell size for mixed-signal systems," IEEE Microw. Wireless Compon. Lett., vol.17, no.7, pp. 489-491, July 2007.
[8] S. M. Riad, “Circuit structure including RF/wideband resonant vias,” U.S. patent 5886597, Mar. 23. 1999.
[9] R. Abhari and G. V. Eleftheriades, “Suppression of the parallel-plate noise in high-speed circuits using a metallic electromagnetic band-gap structure,” IEEE MTT-S Intl. Microw. Symp. Dig., pp. 493-496, 2002.
[10] R. Abhari and G.V. Eleftheriades, "Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits," IEEE Trans. Microw. Theory Tech., vol.51, no. 6, pp. 1629-1639, Jun. 2003.
[11] J. Lee, H. Kim, and J. Kim, "High dielectric constant thin film EBG power/ground network for broad-band suppression of SSN and radiated emissions," IEEE Microw. Wireless Compon. Lett., vol.15, no.8, pp. 505-507, Aug. 2005.
[12] W. E. Mckinzie, and S. D. Rogers, “Circuit and method for suppression of electromagnetic coupling and switching noise in multilayer printed circuit boards,” U.S. patent 7215007 B2, May 8. 2007.
[13] T.-K. Wang, C.-Y. Hsieh, H.-H. Chuang, T.-L. Wu, "Design and modeling of a stopband-enhanced EBG structure using ground surface perturbation lattice for power/ground noise suppression," IEEE Trans. Microw. Theory Tech., vol.57, no.8, pp. 2047-2054, Aug. 2009.
[14] T.-L. Wu, H.-H. Chuang, and T.-K. Wang, "Overview of power integrity solutions on package and PCB: decoupling and EBG isolation," IEEE Trans. Electromagn. Compat., vol.52, no.2, pp. 346-356, May 2010.
[15] C.-Y. Hsieh, C.-D. Wang, K.-Y. Lin, and T.-L. Wu, "A power bus with multiple via ground surface perturbation lattices for broadband noise isolation: modeling and application in RF-SiP," IEEE Trans. Advanced Packaging, vol.33, no.3, pp. 582-591, Aug. 2010.
[16] C.-D. Wang, Y.-M. Yu, F. de Paulis, A.C. Scogna, A. Orlandi, Y.-P. Chiou, and T.-L. Wu, "Bandwidth enhancement based on optimized via location for multiple vias EBG power/ground planes," IEEE Trans. Compon. Packaging Manuf. Technol., vol.2, no.2, pp. 332-341, Feb. 2012.
[17] M. Kim, K. Koo, C. Hwang, Y. Shim, J. Kim, and J. Kim, "A compact and wideband electromagnetic bandgap structure using a defected ground structure for power/ground noise suppression in multilayer packages and PCBs," IEEE Trans. Electromagn. Compat., vol.54, no.3, pp. 689-695, Jun. 2012.
[18] J. Park, A. C. W. Lu, K. M. Chua, L. L. Wai, J. Lee, and J. Kim, "Double-stacked EBG structure for wideband suppression of simultaneous switching noise in LTCC-based SiP applications," IEEE Microw. Wireless Compon. Lett., vol.16, no.9, pp. 481-483, Sept. 2006.
[19] C.-D. Wang and T.-L. Wu, "Model and mechanism of miniaturized and stopband-enhanced interleaved EBG structure for power/ground noise suppression," IEEE Trans. Electromagn. Compat., vol. 55, no.1, pp. 159-167, Feb. 2013.
[20] S. D. Rogers, "Electromagnetic-bandgap Layers for broad-band suppression of TEM modes in power planes," IEEE Trans. Microw. Theory Tech., vol.53, no.8, pp. 2495-2505, Aug. 2005.
[21] J.-H. Kwon, D.-U. Sim, S.-I. Kwak, and J.-G. Yook, "Novel electromagnetic bandgap array structure on power distribution network for suppressing simultaneous switching noise and minimizing effects on high-speed signals," IEEE Trans. Electromagn. Compat., vol.52, no.2, pp. 365-372, May 2010.
[22] C.-L. Wang, G.-H. Shiue, W.-D. Guo, and R.-B. Wu, "A Systematic design to suppress wideband ground bounce noise in high-speed circuits by electromagnetic-bandgap-enhanced split powers," IEEE Trans. Microw. Theory Tech., vol.54, no.12, pp. 4209-4217, Dec. 2006.
[23] L. Raimondo, F. D. Paulis, and A. Orlandi, "A simple and efficient design procedure for planar electromagnetic bandgap structures on printed circuit boards," IEEE Trans. Electromagn. Compat., vol.53, no.2, pp. 482-490, May 2011.
[24] J. Choi, V. Govind, and M. Swaminathan, "A novel electromagnetic bandgap (EBG) structure for mixed-signal system applications," in Radio and Wireless Conf., 2004.
[25] T. H. Kim, D. Chung, E. Engin, W. Yun, Y. Toyota, and M. Swaminathan, "A novel synthesis method for designing electromagnetic band gap (EBG) structures in packaged mixed signal systems," in Proc. Electron. Compon. Technol. Conf., 2006.
[26] Y. Toyota, A. E. Engin, T. H. Kim, M. Swaminathan, and S. Bhattacharya, "Size reduction of electromagnetic bandgap (EBG) structures with new geometries and materials," in Proc. Electron. Compon. Technol. Conf., 2006.
[27] F. de Paulis, L. Raimondo, and A. Orlandi, "IR-DROP analysis and thermal assessment of planar electromagnetic bandgap structures for power integrity applications," IEEE Trans. Advanced Packaging, vol. 33, no. 3, pp. 617-622, Aug. 2010.
[28] F. de Paulis, L. Raimondo, S. Connor, B. Archambeault, and A. Orlandi, "Design of a common mode filter by using planar electromagnetic bandgap structures," IEEE Trans. Advanced Packaging, vol. 33, pp. 994-1002, Nov. 2010.
[29] S.–G. Kim, H. Kim, H. –D. Kang, and J.–G. Yook, "Signal integrity enhanced EBG structure with a ground reinforced trace," IEEE Trans. Electronics Packaging Manufacturing, vol. 33, pp. 284-288, Oct. 2010.
[30] H.–D. Kang, H. Kim, S.–G. Kim, and J.–G. Yook, "A localized enhanced power plane topology for wideband suppression of simultaneous switching noise," IEEE Trans. Electromagn. Compat., vol. 52, pp. 373-380, May 2010.
[31] S. Shahparnia, and O. M. Ramahi, "Design, implementation, and testing of miniaturized electromagnetic bandgap structures for broadband switching noise mitigation in high-speed PCBs," IEEE Trans. Advanced Packaging, vol. 30, pp. 171-179, May 2007.
[32] Y. Toyota, A. E. Engin, T. H. Kim. and M. Swaminathan, "Stopband analysis using dispersion diagram for two-dimensional electromagnetic bandgap structures in printed circuit boards," IEEE Microw. Wireless Compon. Lett., vol.16, no.12, pp. 645-647, Dec. 2006.
[33] Y. Shi, W. Tang, S. Liu, X. Rao and Y. L. Chow, "Ultra-wideband suppression of power/ground noise in high-speed circuits using a novel electromagnetic bandgap power plane," IEEE Trans. Compon., Packag., Manuf. Technol., vol. 3, pp. 653-660, Apr. 2013.
[34] J. Choi, V. Govind, M. Swaminathan, and K. Bharath, "Noise isolation in mixed-signal systems using alternating impedance electromagnetic bandgap (AI-EBG) structure-based power distribution network (PDN)," IEEE Trans. Advanced Packaging, vol. 33, no. 1, pp. 2-12, Feb. 2010.
[35] B. Kim, and D.-W. Kim, "Bandwidth enhancement for SSN suppression using a spiral-shaped power island and a modified EBG structure for a λ/4 open stub," ETRI Journal, vol. 31, no. 2, pp. 201-208, Apr. 2009.
[36] T. H. Kim, M. Swaminathan, A. E. Engin, and B. J. Yang, "Electromagnetic band gap synthesis using genetic algorithms for mixed signal applications," IEEE Trans. Advanced Packaging, vol. 32, no. 1, pp. 13-25, Feb. 2009.
[37] L. Deias, G. Mazzarella, and N. Sirena, "Bandwidth optimization of EBG surfaces using genetic programming," in Antennas & Propagation Conference, 2009. LAPC 2009. Loughborough , vol., no., pp. 593-596, 16-17 Nov. 2009.
[38] P. H. Rao, "Multi-slit electromagnetic bandgap power plane for wideband noise suppression," IEEE Trans. Compon., Packag., Manuf. Technol., vol.1, no.9, pp. 1421-1427, Sept. 2011.
[39] Y. Shi, W. Tang, S. Liu, X. Rao, and Y. L. Chow, "Ultra-wideband suppression of power/ground noise in high-speed circuits using a novel electromagnetic bandgap power plane," IEEE Trans. Compon., Packag., Manuf. Technol., vol.3, no.4, pp. 653-660, Apr. 2013.
[40] H.-R. Zhu and J.-F. Mao, "Localized Planar EBG Structure of CSRR for Ultrawideband SSN Mitigation and Signal Integrity Improvement in Mixed-Signal Systems," IEEE Trans. Compon., Packag., Manuf. Technol., vol.3, no.12, pp. 2092-2100, Dec. 2013.
[41] M. Kim, K. Koo, J. Kim and J. Kim, "Vertical inductive bridge EBG (VIB-EBG) structure with size reduction and stopband enhancement for wideband SSN suppression," IEEE Microw. Wireless Compon. Lett., vol.22, no.8, pp. 403-405, Aug. 2012.
[42] M. Kim, K. Koo, Y. Shim, C. Hwang, J. S. Pak, S. Ahn, and J. Kim, "Vertical stepped impedance EBG (VSI-EBG) structure for wideband suppression of simultaneous switching noise in multilayer PCBs," IEEE Trans. Electromagn. Compat., vol.55, no.2, pp. 307-314, Apr. 2013.
[43] M.-S. Zhang, Y.-S. Li, C. Jia, L.-P. Li, and J. Pan, "A double-surface electromagnetic bandgap structure with one surface embedded in power plane for ultra-wideband SSN suppression," IEEE Microw. Wireless Compon. Lett., vol.17, no.10, pp. 706-708, Oct. 2007.
[44] J. Li, J. Mao, S. Ren, and H. Zhu, "Embedded planar EBG and shorting via arrays for SSN suppression in multilayer PCBs," in Antennas and Wireless Propagation Letters, IEEE , vol.11, no., pp. 1430-1433, 2012.
[45] C.-H. Huang and T.-L. Wu, "Analytical design of via lattice for ground planes noise suppression and application on embedded planar EBG structures," IEEE Trans. Compon., Packag., Manuf. Technol., vol.3, no.1, pp. 21-30, Jan. 2013.
[46] K. Bharath, E. Engin, M. Swaminathan, K. Uriu, and T. Yamada, "Signal and power integrity co-simulation for multi-layered system on package modules," in Electromagnetic Compatibility, 2007. EMC 2007. IEEE International Symposium on , vol., no., pp. 1-6, 9-13 July 2007.
[47] P. Muthana, K. Srinivasan, A. E. Engin, M. Swaminathan, R. Tummala, V. Sundaram, B. Wiedenman, D. I. Amey, K. H. Dietz, and S. Banerji, "Improvements in noise suppression for I/O circuits using embedded planar capacitors," IEEE Trans. Advanced Packaging, vol.31, no.2, pp. 234-245, May 2008.
[48] D.-B. Lin, C.-T. Wu, K.-C. Hung, F.-N. Wu, and Y.-H. Chen, "A fast algorithm to calculate the transfer impedance of an arbitrarily shaped power bus," IEEE Microw. Wireless Compon. Lett., vol.19, no.3, pp. 125-127, March 2009.
[49] J.–S. Hong, Microstrip Filters for RF/Microwave Applications. 2nd. ed., New Jersey: Wiley, 2011, ch. 3.
[50] M. Swaminathan, Power Integrity Modeling and Design for Semiconductors and Systems. Prentice Hall, 2008, ch. 1.
[51] S.-H. Wu and Y.-S. Lin, "A wideband noise-isolation bandstop power distribution network using quarter-wavelength line-based structure," IEEE Trans. Compon. Packag., Manuf. Technol., vol.4, no.6, pp.1071-1081, Jun. 2014.
[52] C. R. Paul, Inductance: partial and loop. New Jersey: Wiley, 2010, ch. 5.
[53] S.-H. Wu, Y.-W. Chen and Y.-S. Lin, "Systematic Design of Bandstop Power Distribution Network Using Resonant Vias, " IEEE Trans. Compon., Packag., Manuf. Technol., vol. 5, no. 4, pp. 1071–1081, Apr. 2015.
指導教授 林祐生 審核日期 2016-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明