博碩士論文 976202019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:34.239.179.228
姓名 黃安和(An-Ho Huang)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 臺灣西北部中新世-更新世沉積岩中黏土礦物和成岩作用研究
(Clay mineralogy and diagenesis of the Miocene-Pleistocene sedimentary rocks, NW Taiwan)
相關論文
★ 台灣西南海域含天然氣水合物地層之構造架構與沈積特徵★ 台灣西南外海之構造與地形特徵及澎湖海底峽谷演化
★ 台灣海峽及台灣西部平原之沈積層速度構造★ 台灣西南外海碰撞帶前緣的近代沉積作用與新構造運動
★ 台灣中部早期前陸盆地的地層紀錄★ 台灣西南部前陸地區演育與古應力分析
★ 台灣西北部漸新世至更新世盆地演化及層序地層★ 煤岩材料與沉積環境綜合研判
★ 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例★ 台灣西北部大漢溪剖面南莊層至楊梅層之沉積環境研究
★ 台灣東北外海沖繩海槽及龜山島附近之海床沉積物特徵★ 台灣西南外海高屏峽谷沉積物及沉積機制研究
★ 台灣西南海域天然氣水合物地質控制因素與資源量評估★ 台灣中部地區潛在二氧化碳封存層與蓋層之礦物組成分析及地體構造意義
★ 臺灣台南外海正斷層以及近代沉積現象研究★ 台灣西南部麓山帶下部上新統之沉積環境及地層對比研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分析臺灣西北部中新統至更新統頁岩之黏土礦物種類與其相對豐度、砂岩之礦物成分,並探討同一岩層於不同地點、不同埋藏深度所經歷之成岩作用,研究樣本取自桃園台地觀音一號井岩心及桃園台地東側之大漢溪、竹坑溪以及三峽溪(以麓山帶稱之)露頭樣本。觀音一號井所取之岩心由淺至深為頭嵙山層至大寮層(250 至2603 公尺,更新世至中新世),共計30 份樣本;麓山帶從年輕至老之地層為錦水頁岩至木山層(各地層最大埋深估計為2550 至5200 公尺,上新世至中新世),共計35 份樣本。結果顯示觀音一號井樣本之膨脹性黏土礦物(如膨潤石)含量高,且隨埋藏深度增加,膨脹性和非膨脹性黏土礦物(如伊萊石)含量無明顯改變。麓山帶樣本中,膨潤石、混層伊萊石/膨潤石隨埋藏深度增加而減少;伊萊石則普遍含量豐富。同時,4000 公尺以下之樣本出現少量有序性混層伊萊石/膨潤石。於淺部地層樣本中,伊萊石含量高且和膨脹性黏土並存。本研究另討論伊萊石結晶度變化和顯微分析。麓山帶地層中,最大埋藏深度超過4500 公尺(包含石底層下部及下伏之地層),伊萊石結晶度範圍為0.28 至0.44 。2θ;埋深小於4500公尺地層中(觀音一號井和麓山帶中石底層上部及其上伏之地層),伊萊石結晶度較高,範圍為0.26 至0.40 。2θ。由於伊萊石為碎屑性來源為主,透過電子顯微鏡(SEM)的礦物元素分析,觀察到深部地層中部份外來伊萊石置換成混層伊萊石/膨潤石,導致少數樣本之伊萊石結晶度稍低。另外,由元素能量散射分析(EDS)可得,麓山帶中新世地層中,自生性混層伊萊石/膨潤石的元素組成隨埋藏深度增加而變化:鐵、鎂離子減少;矽、鋁離子增加。從膨脹性黏土含量隨埋藏深度減少、有序性混層礦物出現、顯微礦物觀察以及混層礦物之元素組成可得: 觀音一號井與麓山帶之中新統至更新統岩石雖為相同沉積物來源,但因岩石埋深不同(麓山帶地層較深),導致麓山帶之成岩作用程度較觀音一號井地層高。
摘要(英) We analyzed clay minerals and their relative abundances of Miocene to Pleistocene shales as well as mineral compositions of sandstones sampled from northwestern Taiwan. Results of vertical changes on clay mineral species and abundances yield information on degree of burial diagenesis along with possible rock types in sediment source terrains. Samples were collected from
two localities, one is from the core materials of KY‐1 well, locating on the western coast of the Taoyuan Tableland, a series of 30 samples was collected from the Pleistocene Toukoshan Formation to the Miocene Taliao Formation, ranging from 181 to 2603 m in depth. The other is from three outcrop sections along the Dahan River, Tzukeng River and Sanshia River, respectively, in the NW
Foothills. We collected 35 samples from the Pliocene Chinshui Shale to the Miocene Mushan Formation with an estimated maximum burial depth ranging in between 2550 to 5200 m deep.
Results from X‐ray powder diffraction analysis on collected samples show that KY‐1 samples are rich in expandable clays, mainly smectite and minor mixed‐layer illite/smectite. There is no characteristic vertical change for the relative abundances of expanding clays and non‐expanding clays (e.g., illite) at the KY‐1 well. For the samples from the Foothills, the abundance of expanding
clays is high in the upper section and decreases its relative abundance when increasing burial depths. In addition, it appears that the depth range of 4000 to
4500 m reveals an ordering mixed‐layered illite/smectite. We therefore interpret that the above depth range is the depth where significant transformation of smectite to illite occurs. However, illites are generally high in
abundance throughout the composite sections of the Foothill. As illite is abundant for all studied samples and it coexists with large amount of expanding clays in rocks experiencing shallow burial, we examined the illite crystallinity in order to understand its origin. For burial depths shallower than 4000 m (i.e. for all formations at the KY‐1 well and Peiliao and younger formations in the foothills), illites show a crystallinity with a Kübler Index of 0.25 to 0.40 。2θ, indicating that most of the illites are sourced from low‐grade metamorphic
terrains. For burial depths deeper than 4000 m (i.e. for Shiti and older formations in the Foothills), some of illites show lower crystallinity with a Kübler Index of 0.40 to 0.44 。2θ. Through microscopic and SEM/EDS analysis in the samples collected from the Foothill regions, the chemical compositions changed among the mixed‐layered Illite/smectite, which were iron and magnesium ions decreased and silicon and aluminum ions increased with
increasing depth. Moreover, in the deeper burial depth, some of detrital illites were altered to mixed‐layered illite/smectite, which is probably the reason why
decreasing illite crystallinity decreases in the deeper depth in the Foothills.
These results indicate that the strata in the Foorhill region experienced more diagenetic effects than strata in the KY‐1 well.
關鍵字(中) ★ 黏土礦物
★ 成岩作用
★ XRD
★ 臺灣西北部
關鍵字(英) ★ XRD
★ NW Taiwan
★ Clay minerals
★ Diagenesis
論文目次 摘要 .................................................... b
Abstract ................................................ c
第一章 緒論 ............................................. 1
1.1 地質背景 ............................................ 2
1.2 前人研究 ............................................ 7
1.2.1 黏土礦物與成岩作用之關係 .......................... 7
1.2.2 沉積物來源區研究 .................................. 9
1.2.3 伊萊石結晶度垂直變化 .............................. 9
1.1.4 砂岩岩象 .......................................... 9
第二章 研究方法 .........................................15
2.1 樣本來源 ............................................15
2.1 X 光粉末繞射分析 ....................................15
2.1.1 試片前處理 ........................................15
2.1.2 ..X 光繞射實驗 ....................................17
2.1.3 ..X 光繞射結果分析 ................................17
2.1.4 半定量分析 ........................................20
2.1.5 結晶度量測 ........................................21
2.2 顯微礦物分析 ........................................21
2.2.1 拋光薄片製作 ......................................21
2.2.2 掃描式電子顯微鏡觀 ................................22
2.3 砂岩岩象分析 ........................................24
第三章 結果與討論 .......................................36
3.1 觀音一號井 ..........................................36
3.2 討論(觀音一號井) ....................................36
3.3 麓山帶 ..............................................37
3.3.1 X 光粉末繞射實驗結果 ..............................37
3.3.2 礦物顯微分析 ......................................38
3.4 討論(麓山帶) ........................................40
3.4.1 膨脹性黏土 ........................................40
3.4.2 伊萊石 ............................................40
3.4.3 綠泥石與高嶺石 ....................................41
3.4.4 其他礦物 ..........................................41
3.5 岩象分析 ............................................42
3.5.1 麓山帶打鹿頁岩至木山層岩象 ........................42
3.5.2 三角成分圖 ........................................42
第四章 結論 .............................................77
參考文獻 ................................................81
附錄 ....................................................91
參考文獻 Baioumy, H.M. and Charaie, M.H.M. (2008) Characterization and origin of late Devonian illitic clay deposit southwestern Iran. Applied Clay Science, 42, 318-325.
Berger, G., Lacharpagne, J.C., Velde, B., Beaufort, D., and Lanson, B. (1997) Kinetic constraints for mineral reactions in sandstone/shales sequences and modeling of the effect of the organic diagenesis. Applied Geochemistry, 12, 23-35.
Bjørlykke, K., Aagaard, P., Dypvik, H., Hastings, D.S. and Harper, A.S. (1986) Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore Mid-Norway. In: A.M. Spencer, Habitat of Hydrocarbons on the Norwegian Continental shelf. Graham and Trotman, London, 275-286.
Bjørlykke, K. (1998) Clay mineral diagenesis in sedimentary basins –a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Minerals, 33, 15-34.
Boggs, S. (2006) Principles of Sedimentology and Stratigraphy. 4th Edition, Pearson Prentice Hall, 662p.
Boles, J.R. (1978) Active ankerite cementation in the subsurface Eocene of Southwest Texas. Contributions to Mineralogy and Petrology, 68, 13-22.
Boles, J.R. and Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of Southwest Texas: implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 55-70.
Bozkaya, O ̈. and Yalcin, H. (2004) Diagenetic to low-grade metamorphic evolution of clay mineral assemblages in Palaeozoic to early Mesozoic rocks of the Eastern Taurides, Turkey. Clay Minerals, 39, 481-500.
Burst, J.F.Jr. (1959) Post-diagenetic clay mineral environmental relationships in the Gulf Coast Eocene. Clays and Clay Minerals, 6, 327-341.
Chang, S.L. (1971) Subsurface geologic study of the area from the Taipei basin to the Kuanyin shelf, Taoyuan, Taiwan. Petroleum Geology of Taiwan, 9, 123-144.
Chen, P.Y. (1973) Clay minerals distribution in the sea-bottom sediments neighbouring Taiwan island and northern South China Sea. Acta Oceanographica Taiwanica, 3, 25-64.
Chiu, H.T. (1967) Stratigraphic correlation of the subsurface formations in northwestern Taiwan. Petroleum Geology of Taiwan, 11, 197-210.
Chou, J.T. (1962) Stratigraphic and sedimentary study of the Mushan Formation in northern Taiwan. Petroleum Geological Society of China, 1, 87-119.
Chou, J.T. (1968) A stratigraphic and sedimentary analysis of the protoquartzite in the Miocene Talu Shale in northern Taiwan. Petroleum Geological Society of China, 6, 115-138.
Chou, J.T. (1970) A stratigraphic and sedimentary analysis of the Miocene in Northern Taiwan. Petroleum Geology of Taiwan, 7, 145-189.
Chou, J.T. (1971) A sedimentologic and paleogeographic study of the NEogene formations in the Taichung region, western Taiwan. Petroleum Geology of Taiwan, 9, 43-66.
Chou, J.T. (1973) Sedimentary and paleogeography of the upper Cenozoic System of western Taiwan. Proceedings of Geological Society of China, 16, 111-143.
Chou, J.T. (1976) Sedimentology and paleogeography of the Miocene clastic sequence in northern Taiwan, with emphasis on its sandstones. Petroleum Geology of Taiwan, 13, 83-118.
Covey, M. (1984) Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep. Petroleum Geology of Taiwan, 20, 53-83.
Curtis, C.D. (1985) Clay mineral precipitation and transformation during burial diagenesis [and Discussion]. Philosophisical Transections of the Royal Society of London, 315(1531), 91-105.
Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstone. In: Provenance of Arenites (Ed. G.G. Zuffa). Reidel, Dordrecht, 333-361.
Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: A review. Sedimentology, 15, 281-346.
Eberl, D., and Hower, J. (1976) Kinetics of illite formation. Geological Society of America Bulletin, 87, 1326-1330.
Foscolos, A.E., and Kodama, H. (1974) Diagenesis of clay minerals from lower Cretaceous shales of northeastern British Columbia. Clays and Clay Minerals, 22, 319-336.
Foscolos, A.E., Powell, T.G. and Gunter, P.R. (1976) The use of clay minerals and inorganic and organic geochemical indications for evaluating the degree of diagenesis and oil generating potential of shales. Geochimica et Cosmochimica Acta, 40, 953-996.
Frey, M. (1970) The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis. Sedimentology, 15, 261-279.
Gier, S., Worden, R.H., Johns, W.D., and Kurzweil, H. (2008) Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin, Austria. Marine and Petroleum Geology, 25, 681-695.
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J. (2003) Scanning Electron Microscopy and X-ray Microanalysis, 3rd Edition. Springer Press, United States of America ,690p.
Hendry, J.P., Wilkinson, M., Fallick, A.E., and Haszeldine, R.S. (2000) Ankerite cementation in deeply buried Jurassic sandstone reservoirs of the central North Sea. Journal of Sedimentary Research, 70, 227-239.
Honty, M., Uhli ́k, P., S ̌ucha, V., C ̌aplovic ̌ova ́, M., Francu ̇, J., Clauer, N. and Biron ̌, A. (2004) Smectite-to-illite alteration in salt-bearing bentonites (the East Slovak Basin). Clays and Clay Minerals, 52, 533-551.
Hower, J., Eslinger, E.V., Hower, M.E. and Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence: Geological Society of America Bulletin, 24, 242-251.
Hower, J. (1981) Shale diagenesis. In: Longstaff FJ (ed) Short course in clays and the resource geologist. Mineralogical Association of Canada, 60-80.
Hsueh, C.M. and Johns, W.D. (1985) Diagenesis of organic materials and clay in the Neogene sediments of western Taiwan. Petroleum Geology of Taiwan, 21, 129-171.
Jensen, M.L. and Bateman, A.M. (1981) Economic Mineral Deposits, 3rd Edition. John Wiley & Sons Inc, New York Press, 604 pp.
Johns, W.D., Grim, R.E., and Bradly, W.F. (1954) Quantitiative estimations of clay minerals by diffraction methods. Journal of Sedimentary Petrology, 24, 242-251.
Klein, C. (2002) Manual of Mineral Science, 22nd Edition. Johns Wiley & Sons, Inc, 641 pp.
Ku ̈bler, B. and Jaboyedoff, M. (2000) Illite crystallinity. Earth and Planetary Sciences, 331, 75-89.
Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A., and Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37, 1-22.
Lee, J.I. and Lee, Y.I. (2001) Ku ̈bler illite “Crystallinity” index of the Cretaceous Gyeongsang basin, Korea: Implications for basin evolution. Clays and Clay Minerals, 49, 36-43.
Lin, A.T., Watts, A.B. (2002) Origin of the West Taiwan Basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research, 107(B9), 2185.
Lin, A.T., Watts, A.B., Hesselbo, S.P. (2003) Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478.
Lin, Y.K. (1971) A petrographic study of the Miocene formations of the HuKou structure in northern Taiwan. Petroleum Geology of Taiwan, 9, 67-78.
Lynch, F.L. (1997) Frio shale mineralogy and the stoichiometry of the smectite-to-illite reaction: the most important reaction in clastic sedimentary diagenesis. Clays and clay minerals, 45, 618-631.
Manius, W.G., Covey M. and Stallard R. (1985) The effects of provenance and diagenesis on clay content and crystallinity in Miocene through Pleistocene deposits, southwestern Taiwan. Petroleum Geology of Taiwan. 21, 173-185.
McHargue, T.R., and Price, R.C., (1982) Dolomite from clay in argillaceous or shale-associated marine carbonates: Journal of Sedimentary Petrology, 52, 873–886.
Meunier, A. (2005) Clays. Springer Press, Heidelberg, 476p.
Moore, D. M. and Reynolds, R. C., Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd Edition. Oxford University Press, New York, 378 p.
Nadeau, P.H., Wilson, M.J., Mchardy, W.J., and Tait, J.M. (1985) The conversion of smectite to illite during diagenesis: evidence from some illitic clays from bentonites and sandstones. Mineralogical Magazine, 49, 393-400.
Perry, E., and Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clay and Clay minerals, 18, 25-36.
Pollastro, R.M. (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119-133.
Ross, N.L. and Reeder, R.J. (1992) High-pressure structural study of dolomite and ankerite. American Mineralogist, 77, 412-421.
Severin, K.P. (2004) Energy Dispersive Spectrometry of Common Rock Forming Minerals. Kluwer Academic Publishers, 228 pp.
Shaw, C.L. (1996) Stratigraphic correlation and isopach maps of the Western Taiwan basin. Terrestrial, Atmospheric and Oceanic Sciences, 7, 333-360.
Suppe, J. (1981) Mechanics of mountain building and metamorphism in Taiwan. Memoir Geological Society of China, 4, 67-89.
Sucha, V., Kraus, I., Gerthofferova, H., Petes, J. and Serekova, M. (1993) Smectite to illite conversion in bentonites and shales of the East Slovak basin. Clay Minerals, 28, 243-253.
Teng, L.S. (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76.
Tucker, M.E. (2001) Sedimentary Petrology. Blackwell Science, 260 pp.
Uysal I.T. and Golding, S.D. (2003) Rare earth element fractionation in authigenic illite–smectite from Late Permian clastic rocks, Bowen Basin, Australia: Implications for physico-chemical environments of fluids during illitization. Chemical Geology, 193, 167–179.
Weaver, C.E. and Beck, K.C. (1971) Clay water diagenesis during burial—How mud becomes gneiss? Geological Society of America Special Paper, 134, 1-78.
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185-187.
Wilson, L. and Pollard, M. (2003) Here today, gone tomorrow? Integrated experimentation and geochemical modeling in studies of archaeological diagenetic change. Accounts of Chemical Research, 35, 644-651.
Wu, F.T. (1968) Petrographic study of oil sands of the Chunlun structure, Chiayi, Taiwan. Petroleum Geology of Taiwan. 6, 183-195.
Wu, F.T.. (1970) Petrographic study of the sandtones in the Kuantzuling area, Taiwan. Petroleum Geology of Taiwan, 7, 229-241.
Yu, H.S., Chou, Y.W. (2001) Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics, 333, 277-291.
中國石油公司 (1978) 十萬分之一地質圖幅第二幅:桃園-新竹。中國石油股份有限公司台灣油礦探勘總處。
李沛然 (1962) 臺灣雲林縣褒忠探井之中生代與新生代岩石。臺灣石油地質,第1號,第75-86頁。
朱筱敏 (2008) 沉積岩石學,第四版。石油工業出版社,共484頁。
何春蓀 (1986) 臺灣地質概論:臺灣地質圖說明書。經濟部中央地質調查所,共169頁。
吳福泰 (1968) 臺灣嘉義縣中崙構造油砂之岩石學研究。臺灣石油地質,第6號,第183-195頁。
邱維毅 (2009) 臺灣西北部漸新世至更新世盆地演化及層序地層。國立中央大學地球物理研究所碩士論文,共103頁。
周瑞燉 (1971)臺灣南部臺南區泥岩層之地層沈積之初步研究。臺灣石油地質,第8號,第187-219頁。
洪奕星 (1988) 臺灣西北部麓山帶中新統至下部上新統岩相和生痕化石岩象分析以及沉積環境。國立臺灣大學地質學研究所博士論文, 共114頁。
羅偉、劉佳玫、郭人瑋、王玉端、李文正 (2010) 臺灣中央山脈能高越嶺路之伊萊石結晶度初步探討。臺灣鑛業,第62卷,第1-13頁。
胡剛、毛爾威 (1996) 五萬分之一臺灣地質圖。圖幅第八號-桃園及圖幅說明書。經濟部中央地質調查所,共39頁。
陳文山 (1985) 臺灣南部恆春半島之地質。國立臺灣大學地質研究所碩士論文,共106頁。
陳文山、鄂中信、陳勉銘、楊志成、張益生、劉聰桂、洪崇勝、謝凱旋、葉明官、吳榮章、柯炯德、林清正、黃能偉 (2000) 上-更新世臺灣西部前陸盆地的演化:沉積層序與沉積物組成的研究。經濟部中央地質 調查所,第13號,第137-156頁。
陳振華、陳文山、王源、陳勉銘 (1992) 由臺灣中部前陸砂岩之岩相研究看褶皺逆衝帶之剝蝕歷史。地質,第12卷,第2期,第147-165頁。
陳培源 (1971) 古亭坑泥岩及出磺坑地區中新世岩層之黏土礦物成分。中國石油公司委託研究報告,14頁(未刊稿)。
陳肇夏、王京新、鐘三雄 (1994) 鉀雲母結晶度在臺灣雪山及中央山脈地層與構造研究上之應用。經濟部中央地質調查所特刊,第8號,第261-284頁。
陳肇夏、王京新 (1995) 台灣變質相圖說明書。經濟部中央地質調查所特刊,第2號,共51頁。
陳肇夏 (1998) 臺灣的變質岩。經濟部中央地質調查所,共356頁。
游能悌 (1995) 南港層與南莊層之層序地層初探。國立臺灣大學地質學研究所碩士論文,共91頁。
張益生 (1994) 臺灣西南部麓山帶上部中新統至更新統砂岩岩象與黏土礦物之分析及其構造意義。國立臺灣大學地質學研究所碩士論文,共86頁。
莊恭周 (1981) 臺灣北港地區井下之黏土礦物研究。探採研究彙報,第4期,第113-125頁。
莊恭周 (1982) 苗栗出磺坑構造中新統之黏土礦物。探採研究彙報,第5期,第21-37頁。
莊恭周 (1983) 新竹苗栗地區碧靈頁岩與木山層中儲油氣層之黏土礦物。探採研究彙報,第6期,第17-33頁。
莊恭周、周定芳 (1984) 新竹苗栗地區打鹿頁岩之黏土礦物與油氣儲集之關係。探採研究彙報,第7期,第 5-14 頁。
趙杏媛、張有瑜 (1990) 黏土礦物與黏土礦物分析。海洋出版社,共339頁。
鄧屬予 (1997) 臺灣的沉積岩。經濟部中央地質調查所,共235頁。
謝凱旋、黃敦友 (2003) 臺灣第三系的地層層序。臺灣礦業,第55卷,第2期,第17-32頁。
指導教授 林殿順(Andrew Tien-Shun Lin) 審核日期 2011-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明