博碩士論文 976204005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.210.201.170
姓名 陳寬哲(Kuan-jhe Chen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 有限長度圓形土柱實驗二維溶質傳輸之解析解
(An analytical solution for two-dimensional radial transport in a finite soil)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展
★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響★ 關渡平原地下水流動模擬
★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度★ 關渡濕地沉積物中砷之地化循環與分布
★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域★ 推估土壤傳輸參數現地試驗方法改進與數學模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二維徑向土柱實驗配合數學模式可推估縱向及側向延散係數,在現有的相關研究中,數學模式常假設土柱長度為無窮大,此假設較不符合實際情況。本研究發展在有限長土柱之二維圓柱座標系統移流-延散方程式之解析解,以描述圓柱形之二維溶質傳輸,分別利用finite Hankel轉換與通用積分轉換方法(GITT)求得解析解,所發展的解析解與Laplace轉換有限差分法(LTFD)進行驗證,驗證結果兩者十分吻合。因為執行積分轉換後的解析解包含finite Hankel與GITT逆轉換級數,當Peclet number較大與延散度比很小時,需要比較高的累加次數才能夠讓解收斂。和前人發展的解析解比較並對邊界條件的影響進行討論,Peclet number較小時若以無窮大邊界的數學模式進行推估可能會低估延散係數。發展的解析解進一步可應用於分析土柱實驗所得濃度穿透曲線,推估孔隙率、縱向與側向延散係數。
摘要(英) Two-dimensional radial column experiment combine with mathematical models to estimate longitudinal and transverse dispersion coefficient. Existing research of mathematical models assumed infinite length of column, but this assumption is not conforming to the actual circumstances. In this research, we developed a analytical solution of the two-dimensional advection-dispersion equations in cylindrical coordinates with a finite soil column for describing solute transport in two-dimensional cylindrical geometry. This analytical solution is obtained in the use of finite Hankel transform and generalized integral transform technique (GITT). Development of analytical solution is verified with Laplace transform finite difference (LTFD). This analytical solution consists of two infinite series expansions after the finite Hankel and GITT inverse transforms. When Peclet number larger and the dispersion ratio is very small, it needs more the number of summed terms for solution convergence. We compared with the previous development of analytical solution, and discussed the effect of different boundary conditions. When the Peclet number are smaller, the concentration of infinite boundary will be lower. If the analytical solutions with infinite boundary condition are used to estimate the solute transport parameters, and therefore underestimate the dispersion coefficients. We further used to analyze the concentration breakthrough curve of column test and estimated porosity, longitudinal and transverse dispersion coefficients.
關鍵字(中) ★ 通用積分轉換
★ 土柱實驗
★ 延散係數
★ finite Hankel轉換
關鍵字(英) ★ general integral transform technique
★ finite Hankel transform
★ dispersion coefficient
★ column test
論文目次 摘要 I
Abstract II
目錄 III
符號說明 VIII
一、研究背景與目的 1
1-1前言 1
1-2文獻回顧 3
1-3研究目的 4
二、有限長度之二維圓柱座標移流-延散方程式求解 6
2-1二維圓柱座標移流-延散方程式與邊界設定 9
2-2數學模式求解 14
三、實驗設備與步驟 24
3-1二維徑向土柱實驗 24
3-2 砂樣準備 25
3-3 儀器設備 25
3-4 實驗步驟 28
四、結果與討論 29
4-1模式驗證 29
4-2參數敏感度分析 44
4-2-1延散度異相比敏感度分析 45
4-2-2 Peclet number敏感度分析 45
4-3邊界條件效應 49
4-4參數推估 51
五、結論與建議 53
參考文獻 55
附錄一 求解正規化特徵函數 與特徵值 58
附錄二 無限長度之解析解 59
參考文獻 [1] Sauty, J. P., 1980. An analysis of hydrodispersive transfer in aquifer. Water Resources Research, 16(1), 145-158.
[2] Dirk, S. M., 2005. Longitudinal Dispersivity data and implications for scaling behavior. Ground Water, 43(3), 443-456.
[3] Ogata, A., 1970. Theory of dispersion in a granular medium, Geological Survey Professional Paper, 441-Ι.
[4] Chen, J. S., C. S. Chen, H. S. Gau and C. W. Liu, 1999. A two well method to evaluate transverse dispersivity for tracer test in a radially convergent flow field, Journal of Hydrology, 223(3-4), 175-197.
[5] Chen, J. S., C.W. Liu and C. M. Liao, 2002, A novel analytical power series solution for solute transport in a radially convergent flow field, Journal of Hydrology, 266(1-2), 120-138.
[6] Chen, J. S., C. W. Liu, and C. M. Liao, 2003, Two-dimensional Laplace transformed power series solution for solute transport in a radially convergent flow field, Advances in Water Resources, 26(10), 1113-1124.
[7] Bear, J., 1961. On the tracer form of dispersion in porous media. Journal of Geophysical Research, 66(4), 1185-1197.
[8] Bear, J., 1961. Some experiments in dispersion. Journal of Geophysical Research, 66(8), 2455-2467.
[9] Grane, F. E., G. H. F. Gardner, 1961. Measurement of transverse dispersion in granular media. Journal of Chemical and Engineering Data, 6 (2), 283-287.
[10] Pichens, J. F., G. E. Grisak, 1981. Scale-dependent dispersion in a stratified granular aquifer, Water Resources Research, 17(4), 1191-1211.
[11] Robbins, G.A., 1989. Methods for determining transverse dispersion coefficients of porous media in laboratory column experiments. Water Resources Research, 25(6), 1249-1258.
[12] Cirpka, O. A., P.K. Kitanidis, 2001, Theoretical basis for the measurement of local transverse dispersion in isotropic porous media, Water Resources Research, 37(2), 243-252.
[13] Benekos, I.D., O. A. Cirpka, and P.K. Kitanidis, 2006. Experimental determination of transverse dispersivity in a helix and a cochlea. Water Resources Research, 42, W07406. doi:10.1029/2005/WR00471.
[14] Massabò M., F. Catanial, and O. Paladino, 2007, A new method for laboratory estimation of the transverse dispersion coefficient, Ground Water, 45(3), 339-347.
[15] Frippiat, C. C., P. C. Pérez, and A. E. Holeyman, 2008, Estimation of laboratory-scale dispersivities using an annulus-and-core device. Journal of Hydrology, 362, 57-68.
[16] Massabò, M., R. Cianci, and O. Paladino, 2006, Some analytical solutions for two-dimensional convection equation in cylindrical geometry, Environmental Modelling & Software, 21(5), 681-688.
[17] Zhang, X., X. Qi, X. Zhou, and H. Pang, 2006, An in situ method to measure the longitudinal and transverse dispersion coefficients of solute transport in soil, Journal of Hydrology, 328, 614-619.
[18] Sneddon, I. H., 1972, The use integral transforms, McGraw-Hill, New York.
[19] Selim, H. M., R. S. Mansell, Analytical solution of the equation of reactive solutes through soils, Water Resources Research, 12 (1976), 528-12532.
[20] Cleary, R. W., Adrian, D. D., 1972, Analytical solution of convective- dispersive equation for cation adsorption in soils. Soil Science Society of America Proceedings, 37, 197-199.
[21] Ozisik, M.N., Heat Conduction, Wiley, New York, 1980.
[22] Cotta, R.M., Integral Transforms in Computational Heat and Fluid Flow, CRC Press, Boca Raton, FL, 1993.
[23] Pérez Guerrero, J. S., L. C. G. Pimentel, T. H. Skaggs, M. Th. van Genuchten, 2009. Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique. International Journal of Heat and Mass Transfer, 52, 3297-3304.
[24] Yah, H. D., S. Y. Yang, 2010. A New Method for Laboratory Estimation of the Transverse Dispersion Coefficient-Discussion. Ground Water, 48(1), 16-17.
[25] Fetter, C.W., 1999. Contaminant Hydrogeology, second ed. Prentice Hall, Upper Saddle River.
[26] Sudicky, E.A., 1989. The Laplace transform Galerkin technique: a time -continuous finite element theory and application to mass transport in groundwater. Water Resources Research, 25(8), 1833-1846.
[27] Moridis, G.J., D.L. Reddel, 1991. The Laplace transform finite difference method for simulation of flow through porous media. Water Resources Research, 27(8), 1873-1884.
指導教授 陳瑞昇(Jui-sheng Chen) 審核日期 2010-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明