博碩士論文 976204011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.204.2.190
姓名 李奕賢(Yi-Hsien Li)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
(Application of HYDRUS-1D Model to Estimate Parameters of Soil Water Characteristic Curve Parameters)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ 沿海含水層異質性對海淡水交界面影響之不確定性分析
★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢
★ 高雄平原地區抽水引致汙染潛勢評估★ 利用自然電位法監測淺層土壤入滲歷程
★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究★ 臺灣西部沿海海水入侵與地下水排出模擬分析
★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析
★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為★ 三維離散裂隙網路水流與溶質傳輸模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 入滲試驗是瞭解土壤水力特性的重要試驗方法之ㄧ,而非飽和層水流流動之數值模式則可做為土壤物理特性改變時,瞭解水流流動機制之快速工具。本研究利用HYDRUS-1D數值模式配合自行撰寫之Levenberg-Marquardt(LM)演算法反推估van Genuchten土壤水分特性曲線參數。模式測試乃由HYDRUS-1D模式產生之測試數據為基礎,再利用反推估模式結合HYDRUS-1D針對無觀測數據之土壤層進行參數推估,並對各參數初始猜測值進行敏感性分析。
經測試後之推估模式再應用至實驗室及現地尺度觀測數據,實驗室試驗先利用標準砂進行單層與多層砂樣入滲試驗,由張力計與含水量計量測土壤入滲過程。本研究先以HYDRUS-1D數值模式利用試誤法調整參數模擬土壤入滲情形,並且與實驗室砂柱所得觀測數據進行套疊,所獲得土壤參數再與本研究開發之LM反推估模式推估之土壤參數進行比較。現地試驗則於濁水溪河岸進行多深度雙環入滲試驗,記錄其土壤入滲量與入滲率,使用LM推估Horton經驗公式參數,求得不同深度飽和土壤入滲率(fc) 、初始入滲率(f0)與入滲參數( )。同時由現地取樣土壤,帶回實驗室進行管柱入滲試驗,配合現地飽和入滲參數再推估實驗室尺度van Genuchten土壤水分特性曲線參數。
研究結果顯示,本研究開發之LM模式配合HYDRUS-1D可以正確地推估van Genuchten非飽和土壤參數,由測試例結果顯示,殘餘含水量(θr) 與α值需從較低的測試例中才可以得到較好的反推估結果,而n值則對初始猜測值較不敏感,飽和水力傳導係數(Ks) 值為推估過程中最敏感參數。
實驗室分析結果顯示,本研究開發之LM模式配合HYDRUS-1D可以較精確地推估非飽和土壤參數。由現地尺度多深度雙環入滲試驗及實驗室砂樣入滲試驗顯示,濁水溪西螺河段,飽和入滲率在一公尺內的不同深度就有一個級數(order)的差異(f0分別為0.0014及0.00015 cm/s),由帶回砂樣進行實驗室試驗結果顯示,其Ks亦有一個級數差異(介於0.00061至0.00118 cm/sec),現地實驗與砂樣試驗差異不大。至於van Genuchten公式中其他參數,θr為0.01(-)、θs是0.2601至0.3227、α則介於0.01688至0.09289(cm-1),n值介於2.528至5.886(-)之間,河床沉積土壤主要為為砂與粉砂。
摘要(英) Infiltration test is an important technique to investigate the hydrologic properties in soils, while the unsaturated flow numerical models can be an efficient tool to understand flow mechanism when the physical properties and conditions of soils are changed. This study employs HYDRUS-1D model and self developed Levenberg-Marquardt algorithm to inversely estimate parameters in the van Genuchten formula. The developed LM model was tested based on the synthetically generated data from HYDRUS-1D model. Additionally, the initial guesses of soil parameters in LM model were systematically analyzed to obtain general insight into the laboratory and field scale applications.
The tested model was then used to estimate soil parameters of laboratory sand box under different infiltration scenarios. During the infiltration tests, the suction or pressure and water content were measured with tensiometers TDR(Time Domain Reflectometry). Such measured data can thus be used in the LM model to estimate the soil parameters. The estimated parameters were compared with those based on trial and error approach.
Field scale double-ring infiltration was tested on the river bank of Zhuoshui river near His-Luo. The saturated infiltration rate(fc), initial infiltration rate (f0), and infiltration parameter by using the in Horton formula were estimated by the developed LM model. The objective of the field scale test is to obtain the saturated infiltration rate(f0) to compare with the results of laboratory experiment. Estimate Van Genuchten parameters by combining the laboratory infiltration experiment of field soil sample and saturated infiltration parameters.
The results of the study reveal that the developed LM model associated with HYDRUS-1D model can accurately estimate van Genuchten soil parameters. The results of model test shows that the lower initial guess values would lead to better estimations of residual water content (θr) and α values. The saturated hydraulic conductivity (Ks) is the most sensitive parameter while the initial guess n values are relatively insignificant.
The LM inversion of tests show that LM model associated with HYDRUS-1D model can estimate accurately van Genuchten for laboratory scale tests soil parameters. The field scale multiple depth double-ring infiltration tests reveals that the saturated infiltration rates(f0) of Zhuoshui river near His-Luo have one order of magnitude difference for different depths such depth difference of hydraulic conductivity (Ks) (0.0014 and 0.00015 cm/s) were also shown in laboratory scale tests. Based on the soil sample from Zhuoshui river the sand box experiment data were then used in LM model to estimate soil parameters. This simulation results showed that the value of α is from 0.01688 to 0.09289(cm-1), the value of n from 2.528 to 5.886(-), the material of the soil can be classified as sand and silt.
關鍵字(中) ★ 入滲試驗
★ 數值模式
★ 非飽和土壤
★ LM演算法
★ HYDRUS-1D
關鍵字(英) ★ HYDRUS-1D
★ Infiltration Test
★ Numerical Model
★ Unsaturated Soil
論文目次 目錄
摘要..............................................IV
ABSTRACT......................................... VII
致謝..............................................X
表目錄............................................XIV
圖目錄............................................XV
符號表............................................XVII
第一章 緒論.........................................1
1.1 前言.............................................1
1.2 研究目的.........................................2
1.3 論文架構.........................................2
第二章 文獻回顧.....................................4
2.1土壤水分特性曲線..................................4
2.2非飽和土壤水流模擬................................8
2.3非飽和土壤參數推估................................9
第三章 理論與模式闡述..............................12
3.1基本概念.........................................12
3.2土壤水分特性曲線.................................14
3.3 van Genuchten土壤水分特性曲線...................15
3.4 HYDRUS-1D模式簡介...............................16
3.5 Levenberg-Marquardt 演算法......................17
3.6現地入滲試驗.....................................22
3.7實驗室砂箱試驗...................................27
第四章 土壤水分特性曲線參數反推估模式測試與分析....31
4.1前人研究結果比較.................................31
4.2 一維砂柱土壤參數反推估模式......................34
4.3 一維三層砂柱模式測試反推估α與n..................48
4.4反推估無觀測數據土壤水分特性曲線參數.............51
4.5土壤水分特性曲線參數反推估模式討論...............68
第五章 反推估實驗室與現地土壤水分特性曲線參數......69
5.1模式設定.........................................69
5.2實驗室砂箱推估結果與討論.........................70
5.3反推估濁水溪河岸土壤水分特性曲線參數.............72
第六章 結論與建議..................................78
6.1 結論............................................78
6.2 建議............................................80
參考文獻............................................82
參考文獻 參考文獻
〔1〕 孫丕奇,「穩態降雨入滲在異質性非飽和斜坡上造成的孔隙水壓變化之研究,中國科技大學碩士論文,32-33頁,2006年。
〔2〕 Horton, R.E. “An approach toward a physical interpretation of infiltration capacity”, Soil Sci. Soc. Am. Proc, Vol 5, pp. 399-417, 1940.
〔3〕 經濟部水資源統一規劃委員會,「臺灣地區地下水資源」,1992年。
〔4〕 Marquardt, D.W. “An algorithm for least-squares estimation of nonlinear parameters”, SIAM J. Appl, Vol 11, pp. 431-441,1963.
〔5〕 Šimůnek, J., van Genuchten, M.Th. and Šejna, M. The Hydrus-1d software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, version 3.0,HYDRUS Software Ser. 1, Dep. of Environ. Sci. s.l. : University of California-Riverside Research Reports, 2005.
〔6〕 Inoue, M., Šimůnek, J., Shiozawa, S., Hopmans, J.W. “Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments”, Advances in Water Resources, Vol 23, 7, pp. 677-688, 2000.
〔7〕 Gottardi, G. and Venutelli, M. “Richards: computer program for the numerical simulation of one-dimensional infiltration into unsaturated soil”, Computers & Geosciences, Vol 19, 9, pp. 1239-1266, 1993.
〔8〕 Brutsaert W. “Probability laws for pore size distribution”, Soil Sci. Soc. Am. J., Vol 101, pp. 85-92, 1966.
〔9〕 van Genuchten, M.Th. and Nielsen, D.R. “On describing and predicting the hydraulic properties of unsaturated soils”, Ann. Geophysica,., Vol 3, pp. 615–628, 1985.
[10] van Genuchten, M.Th. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Sci. Soc. Am. J., Vol 44, pp. 892–898, 1980.
〔11〕 Tyler, S.W. and Wheatcraft., S.W. “Application of fractal mathematics to soil water retention estimation”, Soil Sci. Soc. Am. J., Vol 59, pp. 987–996, 1989.
〔12〕 Tyler, S.W. and Wheatcraft, S.W. “Fractal processes in soil water retention”, Water Resour. Res. Vol 26, 5, pp. 1047-1054,1990.
〔13〕 陳進發,「未飽和層土壤水平衡模式解析及其應用之研究」,成功大學資源工程學系博士論文,2002年。
〔14〕 Garner, W.R. and Mayhugh, M.S. “Solutions and tests of the diffusion equation for the movement of water in soil”, Soil Sci. Soc. Am. J., Vpl 22, pp. 197-201, 1958.
〔15〕 Brooks, R.H. and Corey, A.T. “Properties of porous media affesting fluid flow”, J. Irrig. Drain. Div. Am.Soc.Civ. Eng, Vol 92(IR2), pp. 61-88, 1964.
〔16〕 Russo, D. “Determining soil hydraulic properties by parameter estimation: on the selection of a model for the hydraulic properties”, Water Resour.Res., Vol 24, 3 , pp. 453-459, 1988.
〔17〕 Richards, L.A. “Capillary conduction of liquids through porous medium”, Physics, Vol 1, pp. 313-333,1931.
〔18〕 Milly, P.C.D. “An event-based simulation model of moisture and energy fluxes at a bare soil surface”, Water Resour. Rec., Vol 22, 2 , pp. 1680-1692, 1986.
〔19〕 Milly, P. C. P. “Advances in modeling of water in the unsaturated zone”, Transport Porous Media., Vol 3, pp. 491-514, 1988.
〔20〕 Haverkamp, R., Parlange, J.Y., Starr, J.L., Schmitz, G., Fuentes, C. “Infiltration under ponded conditions: 3. A predictive equation based on physical parameters”, Soil Soc., 149, pp. 292-300, 1990.
〔21〕 Neuman, S.P. “Wetting front pressure head in the infiltration model of Green and Ampt”, Water Resour. Res., 12, pp. 564-566, 1976.
〔22〕. Hornung, H. “The effect of viscosity on the mach stem length in unsteady strong shock reflection”, Flow of Real Fluids., 235, pp. 82-91,1985.
〔23〕 陶方策,「有限解析法在未飽和層水流應用之研究」,國立臺灣大學碩士論文,11-32頁,1995年。
〔24〕 FinsterleS. “ITOUGH2 user’s guide. LBNL-40040”, Lawrence Berkeley National Laboratory, Berkeley, California, pp. 22-45, 2007.
〔25〕 林俐玲、杜怡德、謝銘.,「台灣中部坡地土壤水分特性曲線之研究及水分移動之模擬」,中華水土保持學報,38(4),341-348頁,2007年。
〔26〕 Lehmann, F. and Ackerer, P. “Determining soil hydraulic properties by inverse method in one-dimensional unsaturated flow”, Journal of Environmental Quality, Vol 26, pp. 76–81, 1997.
〔27〕 Šimůnek, J., van Genuchten, M.Th., Gribb, M.M., Hopmans, J.W. “Parameter estimation of unsaturated soil hydraulic properties from transient flow processes”, Soil and Tillage Research, 47, pp. 27-36, 1998.
〔28〕 Ramos, T.B., Goncalves, M.C., Martins, J.C., van Genuchten, M.Th., Pires, F.P. “Estimation of soil hydraulic properties from numerical inversion of tension disk infiltrometer data”, Vadose Zone Journal, Vol 5, pp. 684-696, 2006.
〔29〕 Lambe T.W., Whitman R.V. Soil Mechanics, pp. 119-120,1969.
〔30〕 丁徹士、簡明克,「地下水人工補注入滲動態之試驗研究」,農業工程學報,50(4),2004年。
〔31〕 單信瑜、林宏勳、連健淵、龍元祥,「非飽和土壤體積變形與孔隙壓力參數」,臺北縣,第十屆大地工程學術研討會, 2003年。
〔32〕 Kutflek, M. and Nielsen, D.R. Soil Hydrology. Catena: Cremlingen-Destedt, Germany., 1994.
〔33〕 Yeh, T.C.J. and Harvey, D.J. “Effective unsaturated hydraulic conductivity of layered sands”, Water Resources Research, Vol 26, 6, 1990.
〔34〕 Smith, R.E. and Diekkrüger, B. “Effective soil water characteristics and ensemble soil water profiles in heterogeneous soils”, Water Resour. Res, Vol 32, 7, pp. 1993–2002, 1996.
〔35〕 劉建榮,「 van Genuchten 土壤特性曲線參數對濕鋒模擬與暫態補助量之影響」,逢甲大學土木及水利工程研究所碩士論文. 2001年。
〔36〕劉建榮,「地下滴灌土壤水份之試驗研究」,農業工程學報,53(3),1-10頁,2007年。
〔37〕 李毅、王全九、王文焰、邵明安,「入滲、再分佈和蒸發條件下一維土壤水運動的數值模擬」,灌溉排水學報,26(1),5-8頁,2007年。
〔38〕 王金生、楊志峰、陳家軍、王志明,「包氣帶土壤水分滯留特徵研究」,水利學報,2,1-6頁,2000年。
〔39〕 徐紹輝、劉建立,「土壤水力性質確定方法研究進展」,水科學進展,14(4),494-501頁,2003年。
〔40〕 Twarakavi, N.K.C., Saito, H., Šimůnek, J., van Genuchten, M.Th. “A new approach to estimate soil hydraulic parameter using only soil water retention data”, Soil Sci Soc. Am. J., Vol 72, pp. 471-479, 2008.
〔41〕 劉景輝、王小華、李立軍、賈克力,「Van Genuchten模型在土壤水分特徵曲線擬合分析中的應用」, 乾旱地區農業研究,27(2),2009年。
〔42〕 Celia, M.A., Bouloutas, E.T. and Zarba, R.L. “A general mass-conservation numerical solution for the unsaturated flow equation”, Water Resour. Res., Vol. 26, 7, pp. 1483-1496, 1990.
〔43〕 陳威昇,「類神經網路訓練程序之些許建議」,成功大學碩士論文,10-24頁,2003年。
〔44〕 Levenberg, K. “A method for the solution of certain nonlinear problems in least squares”, Quart. Appl. Math, 2, pp. 164–168, 1944.
〔45〕 ASTM. D3385-94, “Standard test method for infiltration rate of soils in field using double-ring infiltrometer”, ASTM,Phyladelphia, USA. 2003.
〔46〕 陸東旭、劉金濤、尚熳廷、於朋,「土壤表面積水深度對入滲的影響」,乾旱地區農業研究,27(1),2009年。
〔47〕 Šimůnek, J. and Nimmo, J.R. “Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique”, Water Resources Research, 41, pp. W04015, doi:10.1029/2004WR003379, 2005.
〔48〕 劉賢趙、李嘉竹、張振華,「土壤持水曲線van Genuchten模型求參的一種新方法」,土壤學報,44(6),1135-1138頁,2007年。
〔49〕 張舒婷,「土壤水分特性曲線與不飽和水力傳導度之研究」,中興大學碩士論文,2007年。
〔50〕 洪靖惠,「土壤水分特性曲線參數與物理性質關係之研究」,中興大學碩士論文. 2007年。
〔51〕 褚淑慧,「改善未飽和層水流傳輸模式質量守恆與數值擴散問題之研究」, 國立交通大學碩士論文,4-22頁,2002年。
〔52〕 van Genuchten, M.Th. “Non-equilibrium transport parameters from miscible displacement experiments”, Research Report No. 119. U.S. Salinity Laboratory, USDA, ARS, Riverside, CA. 1981.
〔53〕 Kool, J.B., Parker, J.C. and van Genuchten, M.Th. “Determining soil hydraulic properties from one-step outflow experiments by parameter estimation: I. Theory and numerical studies”, Soil Sci. Soc. Am. J., Vol 49, pp. 1348–1354,1985.
〔54〕 邵明安,「非飽和土壤導水參數的推求」,中國科學院水利部西北水土保持研究所彙刊,13,13-25頁,1991年。
〔55〕 卲明安、楊文治、李玉山,「植物根系吸收土壤水分的數學模型」, 土壤學報,24(4),295-304頁,1987年。
〔56〕 Buchter, B., Hinz, C., Wydler, H., Flühler, H. “Evaluation of temperature and bypass flow sensitivity of tensiometers in a field soil”, Geoderma, Vol 87, 3-4, pp. 281-291. 1999.
〔57〕 Šimůnek, J., Wang, D., Shouse, P.J., van Genuchten, M.Th. “Analysis of field tension disc infiltrometer data by parameter estimation”, Int. Agrophysics, Vol 12, pp. 167-180, 1998.
〔58〕 Kool, J.B., Parker, J.C. and van Genuchten, M.Th. “Parameter estimation for unsaturated flow and transport models—a review”, J. Hydrol., 91, pp. 255–293, 1987.
〔59〕 郭勝豐、陳怡雯,「嘉南地區土壤物理特性之研究」,立德學報,1(2),112-121頁,2004年。
〔60〕 曹巧紅、龔元石,「應用Hydrus-1D模型模擬分析冬小麥農田水分氮素運移特徵」,植物營養與肥料學報,9(2),139-145頁,2003年。
〔61〕 吳呈懋、陳主惠、徐年盛、李振誥,「水非飽和孔隙介質中異質物含量及分析對V.G. 模式參數之影響」,農業工程學報,53(1),72-81頁,2007年。
〔62〕 呂華芳、尚松浩,「土壤水分特徵曲線測定實驗的設計與實踐」,實驗技術與管理,26(7),44-45頁,2009年。
〔63〕 肖建英、李永濤、王麗,「利用Van Genuchten模型擬合土壤水分特徵曲線」,地下水,29(5),46-47頁,2007年。
〔64〕 許小建、塗芬芬、黃小平、錢德玲,「差異演化演算法在Van Genuchten方程參數化估計中的應用」, 合肥工業大學學報(自然科學報),31(11),1863-1866頁,2008年。
〔65〕 蘇裡坦、宋郁東、張展羽,「沙漠非飽和風沙土壤水分特徵曲線預測的分形模型」, 水土保持學報,19(4),115-118頁,2005年。
〔66〕 Thalheimer, M. “Tensiometer modification for diminishing errors due to the fluctuating inner water column”, Soil Sci. Soc. Am. J.,Vol 67, 3, pp. 737-739,2003.
〔67〕 張舒婷,「土壤水分特性曲線與不飽和水力傳導度之研究」,中興大學碩士論文,2007年。
〔68〕 林俐玲、杜怡德、謝銘,「台灣中部坡地土壤水分特性曲線之研究及水分移動之模擬」,中華水土保持學報,38(4),341-348頁,2007年。
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明