博碩士論文 976204013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.223.196.211
姓名 李唯祺(Wei-ci Li)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 沿海含水層異質性對海淡水交界面影響之不確定性分析
(Numerical assessments of seawater-freshwater interface uncertainty in heterogeneous coastal aquifer)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢
★ 高雄平原地區抽水引致汙染潛勢評估★ 利用自然電位法監測淺層土壤入滲歷程
★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究★ 臺灣西部沿海海水入侵與地下水排出模擬分析
★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析
★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為★ 三維離散裂隙網路水流與溶質傳輸模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 海水入侵的行為主要受含水層參數的異質性、含水層形貌、潮汐、含水層飽和度以及雨量等因素的控制,為了量化上述參數於沿岸地區對海淡水交界面之影響,本研究使用FEMWATER模式,利用蒙地卡羅法配合Geostatistical Software Library (GSLIB)中的Sequential Gaussian Simulation (SGSIM)隨機場生成器,模擬垂直二維沿岸含水層之海水入侵情形。本研究之模擬區域為一長度400公尺,深度100公尺之沿岸含水層。模式中含水層的水力傳導係數空間分布係由GSLIB中的SGSIM所產生。本研究先討論在不同含水層異質性情況下(包括σ_ln⁡K^2 =0.1、0.5、1.0及1.5,其中σ_ln⁡K^2為對數水力傳導係數變異數)之海水濃度不確定性分布,藉著對海淡水交介面的定義,以0.1g/L海水濃度之分布決定海淡水交界面之不確定性寬度;除了分析含水層異質性對於海淡水交界面之不確定性寬度外,本研究亦考慮五種含水層水文地質條件(含水層飽和及非飽和條件、潮汐變化條件、降雨補注及含地形坡度之含水層)對海淡水交界面不確定性寬度之影響。模擬結果指出含水層中水力傳導係數的分布會對含水層中的水流造成變異,並進而影響海水濃度的分布,範圍可達數十公尺;模擬結果亦表明含水層地形及含水層飽和度會對海淡水交界面的型態有很大的影響,而潮汐水位變化及降雨雨量對於海淡水交界面的影響並不明顯。
摘要(英) The behavior of Seawater intrusion in coastal aquifers is controlled mainly by the aquifer heterogeneity and the natural complexity of aquifer systems such as aquifer geometries, tidal fluctuation, aquifer saturation, and recharges of the aquifer. To systemically quantify such effects on the seawater-freshwater interface in coastal aquifers, this study employs the FEMWATER numerical model, combining Monte Carlo Simulation and Sequential Gaussian Simulation (SGSIM) random field generator, which built in Geostatistical Software Library (GSLIB), to simulate the two-dimensional seawater intrusion procedures in estuary aquifers. A profile estuary aquifer with 400m in length and 100m in depth is considered in the illustrated examples. The hydraulic conductivity fields of the aquifer are generated by SGSIM. Monte Carlo simulations with different degrees of aquifer heterogeneity, including lnK variance= 0.1, 0.5, 1.0, and 1.5, are used to obtain the concentration variation of the seawater-freshwater interfaces. The uncertainty bandwidths of seawater-freshwater interfaces can be obtained based on the defined seawater-freshwater interface of 0.1g/L. Besides the effects of different degrees of aquifer heterogeneity, this study also discusses the influence of five coastal aquifer scenarios (saturated aquifer, unsaturated aquifer, tidal aquifer, recharged aquifer and sloping aquifer) on the uncertainty bandwidths. Simulation results show that the spatial variation of hydraulic conductivity can propagate to flow uncertainties and then change the distributions of saltwater concentration significantly in saturated estuary aquifers. With different degrees of aquifer heterogeneity, the distances of the seawater/ freshwater interfaces vary from meters to tens of meters. Simulation results also show that aquifer geometries and aquifer saturation have significant impact on the patterns of seawater-freshwater interfaces. However, the recharge, and the fluctuation of tidal boundaries have relatively small influence on the variation of seawater-freshwater interfaces.
關鍵字(中) ★ 含水層異質性
★ 海淡水交界面
★ 降雨
★ 潮汐
★ 不確定性分析
★ 蒙地卡羅法
★ 數值模式
關鍵字(英) ★ Uncertainty
★ Aquifer Heterogeneity
★ Seawater-Freshwater Interface
★ Numerical Model
★ Monte Carlo Simulation
★ Tidal Influence
★ Recharge Influence
論文目次 摘要 ii
Abstract iv
Table of Symbols xiv
Chapter 1 Introduction 1
1.1. Motivation and Objectives 1
1.2. Literature Review 3
1.2.1. Sharp Interface Model 4
1.2.2. Hydrodynamic Dispersion Model 5
1.3. Thesis Structure 8
Chapter 2 Methodology 9
2.1. FEMWATER Model 11
2.2. Flow Equation 11
2.3. Transport Equation 12
2.4. Random Field Generator (Sequential Gaussian Simulation) 13
2.5. Monte Carlo Simulation (MCS) 15
Chapter 3 Illustrative Examples 17
3.1. Conceptual Model 17
3.2. Cases Description 20
3.2.1. Saturated Aquifer (Case 1) 21
3.2.2. Unsaturated Aquifer (Case 2) 21
3.2.3. Sloping Aquifer (Case 3) 22
3.2.4. Recharged Aquifer (Case 4) 22
3.2.5. Tidal Fluctuation Aquifer (Case 5) 23
Chapter 4 Results and Discussion 24
4.1. Preliminary Analysis of Simulation Parameters 24
4.1.1. Number of MCS Realizations 25
4.1.2. The Influence of lnK Heterogeneity 26
4.1.4. The Influence of Dispersion 29
4.1.5. Appropriate Mean of Random K 30
4.2. Saturated Aquifer(Case 1) 31
4.3. Unsaturated Aquifer (Case 2) 35
4.5. Recharges Aquifer(Case 4) 41
4.6. Tidal Aquifer(Case 5) 45
Chapter 5 Conclusions and Suggestions 48
5.1. Conclusions 48
5.2. Suggestions 49
References 51
Appendix A van Genuchten Soil Characteristic Curve 62
Appendix B Parameter Modification 63
參考文獻 [1] Renslow, G., “Is Seawater Intrusion Affecting Ground Water on Lopez Island, Washington?”, U.S. Geological Survey Fact Sheet 057-00, 2003.
[2] Bear, J., Hydraulic of Groundwater, Dover Edition, New York, 2007.
[3] 張奇,「海水入侵的實驗研究」,水文地質工程地質,4, 43-47頁,2005年。
[4] Bear, J., Sorek, S., Ouazar, D., Seawater Intrusion in Coastal Aquifers: Concepts, Methods, and Practices, Springer, 1999.
[5] Gotovac, H., Andričević, R., Vranješ, M., “Effects of Aquifer Heterogeneity on the Intrusion of Sea Water”, First International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management, Essaouira Morocco, April 23-25, 2001.
[6] Reilly, T. E., Goodman, A. S., “Quantitative Analysis of Saltwater- Freshwater Relationships in Groundwater Systems – A Historical Perspective”, Journal of Hydrology, Vol 80, pp. 125-160, 1985.
[7] 郭占榮、黃奕普,「海水入侵問題研究綜述」,水文HYDROLOGY,9-15頁,23 (3),2003年6月。
[8] Michael, H. A., Mulligan, A. E., Harvey, C. F., “Seasonal Oscillations in Water Exchange Between Aquifers and the Coastal Ocean”, Nature, Vol 436, pp. 1145-1148, 2005.
[9] Narayan, K. A., Schleeberger, C., Charlesworth, P. B., Bristow, K.L.,
”Effects of Groundwater Pumping on Saltwater Intrusion in the Lower Burdekin Delta, North Queensland”, International Congress on Modelling and Simulation, Vol 2, pp. 212-217. Australia and New Zealand, 2003.
[10] Darnault, C. J. G. “Coastal Aquifer and Seawater Intrusion”, Overexploitation and Contamination of Shared Groundwater Resources NATO science for Peace and Security Series –C: Environment Security, pp. 185-201, 2006.
[11] Schwartz, F. W., Zhang, H., Fundamentals of Groundwater, John Wiley & Sons, Inc., 2003.
[12] Whiteman, K. J., Molenaar, Dee, Jacoby, J. M., Bortleson, G. V., “Occurrence, Quality, and Use of Ground Water in Orcas, San Juan, Lopez, and Shaw Islands, San Juan County, Washington”, Water-Resources Investigations Report 83-4019, 1983.
[13] Simmons, C.T., Fenstemaker, T.R. and Sharp Jr., J.M., “Variable-Density Groundwater Flow and Solute Transport in Heterogeneous Porous Media: Approaches, Resolutions and Future Challenges”, Journal of Contaminant Hydrology, Vol 52, No11, pp. 245- 275, 2001.
[14] Cameo, E. A., “Seawater Intrusion in Complex Geological Environments”, Technical University of Catalonia, PhD Study, March 2006.
[15] Dagan, G., Zeitoun, D. G., “Seawater-freshwater interface in a stratified aquifer”, Journal of Contaminant Hydrology, Vol 29, pp. 185-203, 1998.
[16] Naji, A., Cheng, A. H.-D., Ouazar, D., “Analytical Stochastic Solutions of Saltwater/Freshwater Interface in Coastal Aquifers”, Stochastic Hydrology and Hydraulics, Vol 12, No 6, pp. 413-430, 1998.
[17] Abarca, E., Carrera, J., Sanchez-Vila, X., “Heterogeneous Dispersive Henry Problem”, Second International Conference on Seawater Intrusion and Coastal Aquifers – Monitoring, Modeling, and Management, Merida, Mexico, 2003.
[18] Lecca, G., CauUsing, P., “a Monte Carlo approach to evaluate seawater intrusion in the Oristano coastal aquifer: A case study from the AQUAGRID collaborative computing platform”, Physics and Chemistry of the Earth, Vol 34, pp. 654-661, 2009.
[19]Prieto, C., Kotronarou, A., Destouni, G., “The Influence of Temporal Hydrological Randomness on Seawater Intrusion in Coastal Aquifers”, Journal of Hydrology, Vol 330, pp. 285-300, 2006.
[20] Chen, B. F., ASCE, M., Hsu, S. M., “Numerical Study of Tidal Effects on Seawater Intrusion in Confined and Unconfined Aquifers by time-Independent Finite-Difference Method”, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol 130, No 4, pp. 191-206, 2004.
[21] Naji, A., Cheng, A.H.-D., Ouazar, D., “BEM Solution of Stochastic Seawater Intrusion Problems”, Engineering Analysis with The boundary Elements, Vol 23, pp. 529-537, 1999.
[22] Bhattacharjya, R. K., Datta, B., Satish, M. G., ”Artificial Neural Networks Approximation of Density Dependent Saltwater Intrusion Process in Coastal Aquifers”, Journal of Hydrologic Engineering, Vol 12, No 3, pp. 273-282, 2007.
[23] Lu, C., Kitanidis, P. K., Luo, J., “Effects of Kinetic Mass Transfer and Transient Flow Conditions on Widening Mixing Zones in Coastal Aquifers”, Water Resources Research, Vol 45, W12402, doi: 10.1029/2008WR007643, 2009.
[24] Su, N., Liu, F., Anh, V., “Tides as Phase-Modulated waves inducing periodic groundwater flow in coastal aquifers overlying a sloping impervious base”, Environmental Modeling & Software, Vol. 18, pp. 937-942, 2003.
[25] Li, X., Hu, B. X., Burnett, W. C., Santos, I. R., Chanton, J. P., “Submarine Ground Water Discharge Driven by Tidal Pumping in a Heterogeneous Aquifer”, Ground Water, Vol. 47, No 4 , pp. 558- 568, 2009
[26] Zektser, I. S., Dzhamalov, R. G., Submarine Groundwater, Lorne G. Everett, CRC; 1 edition, 2006.
[27] Dentz, M., Tartakovsky, D. M., Abarca, E., et al., “Variable-Density Flow in Porous Media”, Journal of Fluid Mechanics, Vol 561, pp. 209-235, 2006.
[28] Hocking, G. C., Forbes, L.K., “The Lens of Freshwater in a Tropical Island – 2D Withdrawal”, Computers & Fluids, Vol 33, pp. 19-30, 2004.
[29] Sakr, S. A., “Validity of a Sharp-Interface Model in a Confined Coastal Aquifer”, Hydrogeology Journal, 7,155-160, 1999.
[30] Al-Bitar, A., Ababou, R., “Random Field Approach to Seawater Intrusion in Heterogeneous Coastal Aquifers: Unconditional Simulations and Statistical Analysis”, EUROPEAN COMMISSION Contract ICA3-CT2002-10004 Research Directorate-General, pp. 233-247, 2003.
[31] Cartwright, N., Li, L., Nielsen, P., “Response of The Salt-Freshwater Interface in a Coastal Aquifer to a Wave-Induced Groundwater Pulse: Field Observations and modeling”, Advances in Water Resources, Vol 27, pp. 297-303, 2004.
[32] Bear, J., Zhou, Q., Bensabat, J., “Three Dimensional Simulation of Seawater Intrusion in Heterogeneous Aquifers, with Application to the Coastal Aquifer of Israel”, First International Conference on Saltwater Intrusion and Coastal Aquifers-Monitoring, Modeling, and Management. Essaouria, Morocco, 2001.
[33] Das, A., Datta, B., “Simulation of Seawater Intrusion in Coastal Aquifers: Some Typical Responses”, Sadhana, Vol 26, pp. 317-352, 2001.
[34] Frind, E. O., “Seawater Intrusion in Continuous Coastal aquifer – aquitard systems“, Advances in Water Resources, Vol 5, pp. 89-97, 1982.
[35] Voss, C. I., Souza, W. R.,”Variable Density Flow and Solute Transport Simulation of Regional Aquifers Containing a Narrow Freshwater- Saltwater Transition Zone”, Water Resources Research, Vol 23, No 10, pp. 1851-1866, 1987.
[36] Turner, I., “Water Table Outcropping on Macro-Tidal Beaches: a Simulation Model”, Marine Geology, Vol 115, pp. 227-238, 1993.
[37] Li, L., Barry, D. A., Pattiaratchi, C. B., “Numerical Modeling of Tide- Induced Beach Water Table Fluctuations”, Coastal Engineering, Vol 30, pp. 105-123, 1997.
[38] Ataie-Ashtiani, B., Volker, R. E., Lockington, D. A., “Tidal Effects on Sea Water Intrusion in Unconfined Aquifer”, Journal of Hydrology, Vol 216, pp. 17-31, 1999.
[39] Ataie- Ashtiani, B., Volker, R. E., Lockington, D. A., “Numerical and Experimental study of Seepage in Unconfined Aquifers with a Periodic The Boundary Condition”, Journal of Hydrology, Vol 222, pp. 165-184, 1999.
[40] Li, L., Barry, D. A., Stagnitti, F., Parlange, J. -Y., Jeng, D.-S., ”Beach Water Table Fluctuations Due to Spring- Neap Tides: Moving The boundary Effects”, Advances in Water Resources, Vol 23, pp. 817-824, 2000.
[41] Li, L., Dong, J., Barry, D. A., “Tide- Induced Water Table Fluctuations in Coastal Aquifers The Bounded by Rhythmic Shorelines”, Journal of Hydraulic Engineering, Vol 128, No 10, pp. 925-933, 2002.
[42] Li, H., Jiao, J. J., “Analytical Solutions of Tidal Groundwater Flow in Coastal Two- Aquifer System”, Advances in Water Resources, Vol 25, pp. 417-426, 2002.
[43] Li, H., Jiao, J. J., ”Tide- Induced Seawater- Groundwater Circulation in a Multi- Layered Coastal Leaky Aquifer System”, Journal of Hydrology, Vol 274, pp. 211-224, 2003.
[44] Mao, X., Enot, P., Barry, D. A., Li, L., Binley, A., Jeng D. S., “Tidal Influence on Behavior of a Coastal Aquifer Adjacent to a Low-Relief Estuary”, Journal of Hydrology, Vol 327, pp. 110-127, 2006.
[45] Werner, A. D., Lockington, D. A., “Tidal Impacts on Riparian Salinities near Estuaries”, Journal of Hydrology, Vol 328, pp. 511-522, 2006.
[46] Robinson, C., Li, L., Barry, D. A., “Effect of Tidal Forcing on a Subterranean Estuary”, Advances in Water Resources, Vol 30, pp. 851-865, 2007.
[47] Vandenbohede, A., Lebbe, L., “Effects of Tides on a Sloping Shore: Groundwatr Dynamics and Propagation of The Tidal Wave”, Hydrogeology Journal, Vol 15, pp. 645- 658, 2007.
[48] Park, C. H., Aral, M. M., “Saltwater Intrusion Hydrodynamics in a Tidal Aquifer”, Journal of Hydrologic Engineering, Vol 9, pp. 863-872, 2008.
[49] Lenkopane, M., Werner, A. D., Lockington, D. A., Li, L., “Influence of Variable Salinity Conditions in a Tidal Creek on Riparian Groundwater Flow and Salinity Dynaics”, Journal of Hydrology, Vol 375, pp. 536-545, 2009.
[50] Robinson, C., Brovelli, A., Barry, D. A., Li, L., “Tidal Influence on BTEX Biodegradation in Sandy Coastal Aquifers”, Advances in Water Resources, Vol 32, pp. 16-28, 2009.
[51] Zhang, Q., Volker, R. E., Lockington, D. A., “Influence of seaward the boundary condition on contaminant transport in unconfined coastal aquifers”, Journal of Contaminant Hydrology, Vol 49, pp. 201-215, 2001.
[52] Deutsch, C.V., Journel A.G., GSLIB, Geostatistical software library and user’s guide, Oxford University Press, New York, 1998.
[53] Zhao, Y., Xu, X., Darilek, J. L., et l., “Spatial Variability Assessment of Soil Nutrients in an Intense Agricultural Area, a Case Study of Rugao Country in Yangtze River Delta Region, China.”, Environmental Geology, Vol 57, pp. 1089-1102, 2009.
[54] Yeh, G. T., 3DFEMWATER: A three-dimensional finite element model of water flow through saturated-unsaturated media, ORNL-6368, Oak Ridge National Laboratory, Oak Ridge, TN, 1987.
[55] Yeh, G. T., 3DLEWASTE: A hybrid Lagrangian-Eulerian finite element model of waste transport through saturated-unsaturated media, PSU Technical Report, Department of Civil Engineering, The Pennsylvania State University, University Park, PA, 1990.
[56] Lin, H. J., Rechards, D. R., Talbot, C. A., et al., A three-dimensional finite-element computer model for simulating density-dependent flow and transport in variable saturated media: Version 3.1, U.S. Army Engineering Research and Development Center, Vicksburg, Miss, 1997.
[57] 林淇平,「序率譜方法制定異質性含水層水井捕集區」,國立中央大學,碩士論文,2009年。
[58] Stauffer, F., Guadagnini A., bulter, A., et al., “Delineation of Source Protection Zones Using Statistical Methods”, Water Resources Management, Vol 19, pp. 163-185, 2005
[59] Segol, G., Classic Groundwater Simulations – Proving and Improving Numerical Models, Bechtel Group, Inc., San Francisco, 1993.
[60] Hardyanto, W., Merkel, B., “Introducing probability and uncertainty in groundwater modeling with FEMWATER-LHS”, Journal of Hydrology, Vol 332, pp. 206– 213, 2007.
[61] Environmental Protection Agency, 台灣環境敏感指標(ESI)海岸調查手冊, http://www.epa.gov.tw/FileDownload/FileHandler.ashx?FLID=8592
[62] Mahesha, A., Nagaraja, S. H., “Effect of natural recharge on sea water intrusion in coastal aquifers”, Journal of Hydrology, Vol 174, pp. 211– 220, 1996.
[63] van Genuchten, M. Th.,“A closed form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Science Society of America Journal, Vol. 44, pp. 892–898, 1980.
指導教授 倪春發(Chuen-fa Ni) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明