博碩士論文 976206002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:35.172.236.135
姓名 鄭宇凡(Yu-Fan Zheng)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 濁水溪河口懸浮沉積物輸送之調查研究
(Study on Suspended Sediment Transport in Cho-Shui Estuary)
相關論文
★ 西北太平洋長期波候變遷之研究★ 近岸海洋波浪對海面粗糙度之影響
★ 低掠角微波雷達海面背向散射強度受波浪影響程度之探討★ 澎湖海域潮流之數值模擬及其發電潛能評估
★ 台灣沿海表面風之週期特性★ 微波雷達與CCD影像分析於潮間帶地形測量之應用
★ The directional spreading of surface wave in the shallow water zone★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan
★ 平緩海灘表層含水量變化特性研究★ 沿岸及河口沉積物氮移除過程的N2和N2O產率:穩定同位素示蹤劑方法的改進及應用
★ Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement★ 內陸棚及河口混合與擴散特性觀測研究
★ 臺灣海峽海洋塑料垃圾的輸運★ 有限項目的連續水質監測 應用於探討觀新藻礁區水體環境即時變化
★ 海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係★ 經驗動態方程分析浮游植物多樣性與生態系功能的交互作用-跨系統比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣週邊海域陸源沉積物的來源主要由極端降雨事件之逕流經由河口輸出,而懸浮沉積物於河口輸送陸源物質過程受潮汐影響甚大,考慮台灣海峽中段潮差達4-5m 潮流流速最大達1.5 m/s。本研究旨在探討潮汐對於懸浮沉積物於台灣海峽之輸送之影響。
本研究於2008年至2010年間濁水溪河口進行4次現場調查,首先探討利用聲學儀器推算懸浮沉積物濃度的可行性,利用聲學儀器推算懸浮沉積物濃度之準確性會受到懸浮沉積物粒徑以及儀器參數的影響,針對此兩項因素影響聲學儀器的不確定性,透過聲學儀器回聲強度平均後降低其不確定性並利用光學濁度值與採水樣本關係式間接推算懸浮沉積物濃度,希望透過此方法降低聲學儀器的不確定性影響,並以此估算懸浮沉積物濃度。
本研究調查結果發現濁水溪河口懸浮沉積物之粒徑大小分佈呈非線性韋伯分佈,據此本文以此分佈描述不同粒徑懸浮沉積物濃度之時空變化。本研究透過粒徑分佈形狀參數與尺度參數分別與採水樣本懸浮沉積物濃度進行比較,發現當懸浮沉積物濃度遞增時形狀參數遞減、尺度參數遞增,整體分佈向大粒徑方向偏極,說明懸浮沉積物濃度與粒徑分佈特性具有高度相關,且不受沉降或再懸浮機制之影響。在台灣海峽中的潮汐對於河口陸源沉積物之輸送影響方面:1.針對潮流流速引致的再懸浮部分由觀測與採水樣本結果中發現,流速增加將使底層之懸浮質濃度增加,其增加速度高於表層,增強近岸河口的層化效應;當流速高於0.8 m/s時,層化效應阻礙紊流的發展使底床剪應力減弱,限制底床懸浮質濃度的繼續增加。此外於2008年調查中直接觀測到懸浮沉積物於河口附近之沉降,其沉降速度為0.0013 m/s以及0.0022 m/s,跟史托克公式結果相符。
本研究發現陸源沉積物於極端事件與一般降雨事件有顯著差異:一般事件下濁水溪河口懸浮沉積物濃度之時空分布受潮流引致之再懸浮機制影響為主,懸浮質濃度與流速大小具有高度相關,其間存在約80分鐘之相位差。再懸浮發生時,粒徑為16 μm以下之細懸浮顆粒所佔之比例增加。而極端事件下濁水溪河口懸浮沉積物濃度受潮汐水位影響為主,低潮位時河口沉積物輸送通量增加,河口海域SSC隨之增加並形成水舌。
摘要(英) The annual yield of terrestrial sediment in the estuaries around Taiwan is dominated by fluvial discharge in extreme rainfall events. The transportation of terrestrial suspended sediment in the middle of Taiwan Strait is effected by tidal current, considering that the tidal range reachs 4-5 m while the current speed up to 1.5 m/s. The present study emphasize on the tidal effects on suspended sediment transport in Taiwan Strait.
Four field surveys, including a typhoon case in the summers from 2008 to 2010 at Cho-Shui estuary were carried out. For the suspended sediment concentration (SSC) measurement, we discuss the validity of using acoustic echo intensity to infer the SSC. The associated accuracy is influenced by suspended sediment particle size and instrument parameters. In present study we establish the relationship of acoustic echo intensity with the optical back-dispersion turbidity to reduce the uncertainty of the estimation of SSC.
We found that the Nonlinear Weibull distribution can be adopted to describe the probability distribution of suspended sediment particle size. It is found that the Weibull shape parameter is inversely proportional whilist the Weibull scale parameter is proportional to SSC. These results illustrate that the SSC feature high correlation to suspended sediment particle size distribution.
Concerning to the tidal effects, resuspension by strong tidal current dominated the SSC in the estuary. The SSC at the bottom boundary layer increases with the current speed, moreover it increases more rapidly than in the sub-surface layer. Hence it contributes to the stratification strengthened in the estuary. As a result, when current speed reaches 0.8 m/s, the stratification effect damps the turburlence intensity, and reduce shear stress in bottom boundary layer, which limits the resuspension.
This study also show a significant difference between normal condition and extreme events: In normal condition, temporal and spatial distribution of the SSC is dominated by the resuspension incluced by tidal current, with a phase lag of 80 minutes. In the Cho-Shui estuary, when the resuspension dominates, suspended sediment with grain size greater than 16 μm increases. In extreme events, the tidal sea-levels is responsible for the SSC temporal and spatial distribution, the estuary SSC increase rapidly by the low slack tide induced sediment discharge.
關鍵字(中) ★ 河口陸源沉積物 關鍵字(英) ★ terrestrial suspended sediment
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XXVIII
第一章 濁水溪河口懸浮沉積物輸送之研究緣起與目的 1
1.1 河口懸浮沉積物輸送之研究緣起 1
1.1.1 濁水溪簡介 3
1.2 河口懸浮沉積物輸送研究文獻回顧 8
1.2.1 河口懸浮沉積物沉積現象 8
1.2.2 河口懸浮沉積物再懸浮現象 11
1.2.3 河口懸浮沉積物水舌現象 12
1.2.4 河口懸浮沉積物重力流現象 13
1.3 研究目的 20
1.4 本文組織 20
第二章 濁水溪河口實驗設計與觀測資料 21
2.1 濁水溪河口實驗目的與實驗設計 21
2.1.1 2008年07月20-21日實驗目的與實驗設計 21
2.1.2 2008年10月05日實驗目的與實驗設計 23
2.1.3 2009年07月15日實驗目的與實驗設計 26
2.1.4 2010年08月25日實驗目的與實驗設計 30
2.2 觀測儀器介紹 32
2.2.1 都卜勒流剖儀(Acoustic Doppler Current Profiler,ADCP) 32
2.2.2 鹽度-溫度-深度儀(CTD) 32
2.3 濁水溪河口觀測結果 33
2.3.1水位、鹽度與濁度 33
2.3.2 懸浮沉積物粒徑 43
2.3.3 回聲強度 51
2.3.4 流速流向 70
第三章 回聲強度推算懸浮沉積物濃度之可行性評估 86
3.1 估算河口懸浮沉積物濃度之工具介紹 86
3.1.1 聲學儀器 86
3.1.2 衛星遙測 90
3.1.3 模式模擬 91
3.1.4 其他儀器 92
3.2 回聲強度轉換懸浮沉積物濃度原理 96
3.3 回聲強度推算懸浮沉積物濃度之可行性評估 98
第四章 濁水溪河口懸浮沉積物輸送特性觀測結果與討論 109
4.1 懸浮沉積物濃度的時空分佈 112
4.1.1 懸浮沉積物濃度時空分佈 112
4.1.2 懸浮沉積物濃度的時間變化 119
4.1.3 水舌Front line位置變化 122
4.2 粒徑統計特性及其時空分佈 123
4.2.1 粒徑分佈統計特性 123
4.2.2 粒徑分佈時空特性 125
4.2.3 粒徑分佈受潮流流速的影響變化 126
4.2.4 底床粒徑的空間分佈 132
4.3 濁水溪河口懸浮沉積物輸送特性討論 133
4.3.1 強潮流所造成的混合再懸浮 133
4.3.2 懸浮沉積物的沉降速度 134
4.3.3 一般事件與極端事件的差異 137
第五章 結論與建議 138
5.1 結論 138
5.2 建議 139
參考文獻 141
附錄一 147
附錄二 183
附錄三 226
附錄四 231
參考文獻 [1] 施玉,台灣別錄,1848。
[2] 羅瀲蔥,張發兵: ADCP在太湖沉積物再懸浮分析中的應用. 湖泊科學,第15卷第4期, 2003.
[3] 蘭志剛,龔德俊,李思忍,徐永平,秦楓,姜靜波:ADCP對懸浮沉積物濃度的測量及誤差分析研究. 海洋科學,第28卷第10期,2004.
[4] 程江,何青,王元葉:利用LISST觀測絮凝體粒徑、有效密度和沉速的垂線分布. 泥沙研究,第1期, 2005.
[5] 王豔姣,張培群,董文杰,張鷹:懸浮泥沙反射光譜特性和泥沙量估算試驗研究. 泥沙研究,第5期, 2007.
[6] 劉金源,水中聲學-水聲系統之基本操作原理,國立編譯館,台北市,民國九十年。
[7] Agrawal, Y. C. and Pottsmith, H. C.: Instruments for particle size and settling velocity observations in sediment transport. Marine Geology 168, 89-114, 2000.
[8] Bartholomä, A., kubicki, A., Badewien, T. H. and Flemming B. W.: Suspended sediment transport in the German Wadden Sea-seasonal variations and extreme events. Ocean Dynamic 59, 213-225, 2009.
[9] Camenen, B., Larson, M. and Yamashita, T.: A simple formulation of the non-cohesive sediment-transport. Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 48 B, 2005.
[10] Camenen, B. and Larson, M.: A general formula for noncohesive suspended transport. Journal of Coastal Research, vol. 24, No. 3, 2008.
[11] Chan, S. N., Geyer, W. R., and Hsu, T.: A numerical investigation of the dynamic of hyperpycnal river plume on sloping shelves, Taoyuan, R.O.C., 2011.
[12] Chanson, H., Takeuchi, M. and Trevethan, M.: Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary. Journal of Environmental Management 88, 1406-1416, 2008.
[13] Dadson, S., Hovius, N. Pegg, S., dade, W. B. and Horng, M. J.: Hyperpycnal river flows from an active mountain belt. Journal of Geophysical research, vol. 110, 2005.
[14] Deines, K.L.: Backscatter estimation using broadband acoustic Doppler current profilers. IEEE Conference Proceeding, September 13-16,1999.
[15] Fohrmann, H., Backhaus, J. O., Blaume, F. and Rumohr, J.: Sediment in Bottom-Arrested Gravity Plumes: Numerical Case Studies. Journal of Physical Oceanography, vol. 28, 2250-2274, November, 1998.
[16] Friedrichs, C. T. and Wright, L. D.: Gravity-driven sediment transport on the continental shelf: implications for equilibrium profiles near river mouths. Coastal Engineering 51, 795-811, 2004.
[17] Ferré, B., Guizien, K., durrieu de Madron, X., Palanques, A., Guillén, J. and Grémare, A.: Fine-grained sediment dynamics during a strong storm event in the inner-shelf of the Gulf of Lion(NW Mediterranean). Continental Shelf research 25, 2410-2427, 2005.
[18] Hill, P. S., Milligan, T. G. and Geyer, W. R.: Controns on effective settling velocity of suspended sediment in the Eel River flood plume. Continental Shelf Research 20, 2095-2111, 2000.
[19] Hessner, K. and Rubino, A.: The Rhine Outflow Plume Studied by the Analysis of Synthetic Aperture Radar Data and Numerical Simulations. Journal of Physical Oceanography, vol. 31, 3030-3044, October, 2001.
[20] Hsu, T. J., Ozdemir, C. E. and Traykovski, P. A.: High-resolution numerical modeling of wave-supported gravity-driven mudflows. Journal of Geophysical Research, vol. 114, C05014, 2009.
[21] Khan, S. M., Imran, J., Bradford, S. and Syvitski, J.: Numerical modeling of hyperpycnal plume. Marine Geology, 222-223, 193-211, 2005.
[22] Kilcher, L. F. and Nash, J. D.: Structure and dynamics of the Columbia River tidal plume front. Journal of Geophysical Research, vol. 115, C05S90, 2010
[23] Lihan, T., Saitoh, S. I., Iida, T., Hirawake, T. and Iida, K.: satellite-measured temporal and spatial variability of the Tokachi River plume. Estuarine, Coastal and Shelf Science 78, 237-249, 2008.
[24] Liu, J.P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J. and Lin S. W.: Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology 256, 65-76, 2008.
[25] Mulder, T., syvitski, J. P. M., Migeon, S., Faugères, J. C. and Savoye, B.: Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Marine and Petroleum Geology 20, 861-882, 2003.
[26] Milliman J. D. and Kao, S. J.: Hyperpycnal Discharge of Fluvial Sediment to the Ocean: Impact of Super-Typhoon Herb(1996) on Taiwanese Rivers. Journal of Geology, vol. 113, p. 503-516, 2005.
[27] Merckelbach, L. M.: A model for high-frequency acoustic Doppler current profiler backscatter from suspended sediment in strong currents. Continental Shelf Research 26, 1316-1335, 2006.
[28] Milliman J. D., Lin, S. W., Kao, S. J., Liu, J. P., Liu, C. S., Chiu, J. K. and Lin Y. C.: Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, vol. 35, No. 9, p. 779-782, September 2007.
[29] Ma, Y., Wright, L. D. and Friedrichs, C. T.: Observations of sediment transport on the continental shelf off the mouth of the Waiapu River, New Zealand: Evidence for current-supported gravity flows. Continental Shelf Research 28, 516-532, 2008.
[30] Nezlin, N. P., Digiacomo, P. M., Diehl, D. W., Jones, B. H., Johnson, S. C., Mengel, M. J., Reifel, K. M., Warrick, J. A. and Wang, M.: Stormwater plume detection by MODIS imagery in the southern California coastal ocean. Estuarine, Coastal and Shelf Science 80, 141-152, 2008.
[31] Orton, P. M. and Kineke, G. C.: Comparing Calculated and Observed Vertical Suspended-Sediment Distributions from a Hudson River Estuary Turbidity Maximum. Estuarine, Coastal and Shelf Science, vol. 52, 401-410, 2001.
[32] Orton, P. M., Jay, D. A. and Wilson, D. J.: A multi-class suspended particulate matter calibration for bottom boundary layers. Submitted to Marine Geology, April 3, 2003.
[33] Orton, P. M. and jay, D. A.: Observations at the tidal plume front of a high-volume river outflow. Geophysical Research Letters, vol. 32, L11605, 2005.
[34] Parsons, J. D., Bush, J. W. M. and Syvitski J. P. M.: Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentologists, vol. 48, 465-478, April, 2001.
[35] Poerbandono and Mayerle, R.: Assessment of approaches for Converting Acoustic echo Intensity into Suspended Sediment Concentration. 3rd FIG Regional Conference Jakarta, Indonesia, October 3-7, 2004.
[36] Ray, K., Jim, B., Paul, V., Jeff, P. and Mark, F.:Measuring flow velocity and sediment transport with an acoustic Doppler current profiler. Geomorphology 68, 25-37, 2005.
[37] Rose, C. P. and Thorne, P. D.: Measurements of suspended sediment transport parameters in a tidal estuary. Continental Shelf Research 21, 1551-1575, 2001.
[38] Sternberg, R. W., Cacchione, D. A., Drake, D. E. and Kranck, K.: Suspended Sediment Transport in an Estuarine Tidal Channel Within San Francisco Bay, California. Marine Geology, vol. 71, 237-258, 1986.
[39] Scully, M. E., Friedrichs, C. T. and Wright L. D.: Numerical modeling of gravity-driven sediment transport and deposition on an energetic continental shelf: Eel River, northern California. Journal of Geophysical Research, vol. 108, No. C4, 3120, 2003
[40] Saitoh, Y., Tamura, T. and Masuda F.: Characteristics of Hyperpycnal Flow and its Deposits as an Innovative Factor for the Turbidite Paradigm. Journal of Geography, vol.114, 687-704, 2005.
[41] Scully, M. E. and Friedrichs, C. T.: Sediment pumping by tidal asymmetry in a partially mixed estuary. Journal of Geophysical Research, vol. 112, C07028, 2007.
[42] Sheng, Y. P. and Kim, T.: Skill assessment of an integrated modeling system for shallow coastal and estuarine ecosystems. Journal of Marine System 76, 212-243, 2009.
[43] Siegle, E., Schettini, C. A. F., Klein, A. H. F., Toldo Jr., E. E.: Hydrodynamics and Suspended Sediment Transport in the Cambriú Estuary-Brazil: Pre Jetty Conditions. Brazilian Journal Oceanography, vol. 57, 123-135, 2009.
[44] Talke, S.A., V.N. de Jonge, and H.E. de Swart: The dynamics of estuarine turbidity maxima. Workshop on Ems Estuary, Groningen, Netherlands, March 2006.
[45] Thorne, P. D. and Hanes, D. M.: A review of acoustic measurement of small-scale sediment processes. Continental Shelf research 22, 603-632, 2002.
[46] Traykovski, P., Wiberg, P. L. and Geyer, W. R.: Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf. Continental Shelf Research 27, 375-399, 2007.
[47] Uncles, R. J., Stephens, J. A. and Harris, C.: Properties of suspended sediment in the estuarine turbidity maximum of the highly turbid Humber Estuary system, UK. Ocean Dynamics 56, 235-247, 2006.
[48] Wright, L. D. and Nittrouer, C. A.: Dispersal of river sediments in coastal seas – 6 contrasting cases. Estuaries. vol. 18, No. 3:494-508.
[49] Warrick, J. A., Mertes, L. A. K., Siegel, D. A. and Mackenzie, C.: Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with sea WiFS. International Journal of Remote Sensing, vol. 25, Issue 10, P. 1995 – 2002, 2004
[50] Warrick, J. A., Mertes, L. A. K., Washburn, L. and Siegel, D. A.: Dispersal forcing of southern California river plumes, basced on field and remote sensing observations. Geo-Marine Letters, vol. 24, 46-52, 2004.
[51] Wall, G. R., Nystrom, E. A. and Litten, S.: Use of ADCP to Compute Suspended-Sediment Discharge in the Tidal Hudson River, New York. Scientific Investigations Report, 5055, 2006.
[52] Winterwerp, J. C.: Stratification effects by fine suspended sediment at low, medium, and very high concentrations. Journal of Geophysical Research, 111, C05012.1- C05012.11, 2006.
[53] Wright, L. D. and Friedrichs, C. T.: Gravity-driven sediment transport on continental shelves: A status report. Continental Shelf Research 26, 2092-2107, 2006.
[54] Warrick, J. A., Xu, J., Noble, M. A. and Lee, H. J.: Rapid formation of hyperpycnal sediment gravity current offshore of a semi-arid California river. Continental Shelf Research 28, 991-1009, 2008.
[55] Wolanski, E., Fabricius, K. E., Cooper, T. F. and Humphrey, C.: Wet season fine sediment dynamics on the inner shelf of the Great Barrier Reef. Estuarine, Coastal and Shelf Science 77,755-762,2008
指導教授 錢樺(Hwa Chien) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明