博碩士論文 976206005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.118.9.7
姓名 陳孟志(Meng-Zhi Chen)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 以三維賓漢流數值模式模擬海嘯沖刷坑之發展
(3D Numerical Simulation on the Scouring Problem Induced by Tsunami Flood)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用
★ 海岸樹林及消波結構物對海嘯能量消散之模擬★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬
★ 裙礁流場之數值分析與消能特性之探討★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究
★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析★ 蘭嶼海嘯石與1867年基隆海嘯之動力分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文將三維NS-VOF模式結合賓漢雙黏性流模式,以探討海嘯湧潮與颱風洪水造成結構物基礎沖刷之問題,模式以兩黏性參數以及降伏應力表示泥沙受水流沖刷之運動行為,其中 為牛頓流體運動行為與 為泥沙固態之特性, 表示泥沙被水流帶起之臨界應力值。在進行研究之前,本文先進行模式驗證。自由液面驗證方面,本研究設計潰壩湧潮撞擊結構物陣列之實驗,以驗證模式預測自由液面發展之預測準確度,其模擬結果與實驗高速攝影機捕捉之水位十分吻合。在賓漢雙黏性流方面,與 Bird et al.(1983)所推導之解析解驗證,模擬求得之流速與其求得之解析解流速相當一致,確認模式發展無誤。在沖刷坑發展方面,採用Dey and Barbhuiya (2005) 所發表水流對於圓形橋墩之沖刷坑實驗作為驗證對象,其結果表示模式能適切描述底床沖淤之過程與範圍,且能預測最大之沖刷深度,然於下游堆積處有較明顯之差異。本模式對於水流衝擊結構物之墩前壅水現象、向下射流與沖刷坑周圍近似馬蹄型渦流之效應產生皆能確切描述。
模式驗證並瞭解其準確性後,本文以2009莫拉克颱洪之雙園大橋斷橋事件為三維真實尺寸為研究對象,分別探討未補樁之初始橋墩與補樁擴座後之兩種橋墩型態對於沖刷坑變化之影響,並進一步分析基樁之水流壓力與公路橋梁設計規範(交通部,2009)之經驗公式值之適用性。後續並探討洪水挾帶漂流物掛淤於結構物間對於底床沖刷變化之影響,其中掛淤位置分別為浮木掛淤於兩座橋墩間、浮木掛淤於橋墩上游側、浮木掛淤於群基樁間及浮木掛淤於橋墩跨距間之極端掛淤案例四類逐一探討,研究結果發現浮木掛淤於兩座橋墩間、掛淤於上游與掛淤於群基樁間對沖刷坑並無顯著之影響,然而增加浮木掛淤數量則會加速沖刷坑發展且使沖刷坑深度增大。
由以上驗證與案例分析可知,賓漢雙黏性流模式能適切的探討洪流與結構物交互作用之沖刷坑發展過程,且能避免使用過多經驗公式以及經驗參數。研究亦證明本模式能廣泛運用於湧潮或海嘯對於沖刷結構物基礎之沖刷深度預測。
摘要(英) We integrate the 3D NS-VOF model with Bingham Bi-viscous fluid model to investigate the scouring problems around the structures induced by tsunami bores or typhoon floods. In this model, the scour mechanism is modeled by two viscosities and a yield stress. In which is used to describe Newtonian viscosity of liquefied sediment, and is for the solid-state properties of the sediment, and is for presenting the yield stress induced by the current. Before implementing this model, benchmark tests are performed. For validating the model accuracy on predicting the free-surface kinematics, we designed a case in which a dam-break bore is impinging with a structure array. A high-speed camera is used to record the free-surface movement. Very good agreement between the model prediction and experimental data can be seen. For validating the Bingham Bi-viscous fluid model, we compare the result with the analytical solution derived by Bird et al.(1983). The comparison shows that the numerical result is almost identical to the analytical solution in terms of the velocity distribution. For validating the profile of scour hold, we simulate the case proposed by Dey and Barbhuiya (2005) in which the current is flowing around a circular pier. The result shows that our model is able to predict the maximum scouring hole and properly describe the scour mechanism and also the scour area around the cylinder. However, larger discrepancy can be found in the accumulation zone at the downstream direction. In this case, the present model can accurately present several phenomena, such as the bow wave, downword jet current, and horseshoe vortex around the cylinder.
After validating the model, we study the event of Shuangyuan bridge failure caused by 2009 Moarkot typhoon flood. We focus the discussion on the shape difference of the scour holes around the origional of bridge plies and the extended bridge piles. We also explore the suitability of using the empirical formula issued by the government (Ministry of transportation and communications R. O. C., 2009) We further study the the blocking effect from the drifting obstacles. Four scenarios are studied for understanding the effect from different stocking locations. The result shows no significant difference for difference stocking locations. However, adding the quantity of the drifting obstacles will increase the scouring rate and increase scour depth.
Overall speaking, Bingham Bi-viscous fluid model can be used to explore the development of scour hold, and avoid using too many empirical formulations and parameters. We also demonstrate that the present model can be widely used to predict the local scour depth induced by floods or tsunami bores.
關鍵字(中) ★ 局部沖刷
★ 賓漢流
★ 洪水
★ 海嘯湧潮
★ 沖刷坑
★ 體積分率法(VOF)
關鍵字(英) ★ Local Scour
★ Volume of Fluid (VOF)
★ Scour Hole
★ Tsunami Bore
★ Bingham Flow
★ Flood
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XVI
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
1-3 本文架構 4
第二章 文獻回顧 6
2-1 碎波與結構物研究回顧 7
2-2 沖刷研究文獻回顧 9
2-3 賓漢流文獻回顧 12
第三章 研究方法與模式說明 15
3-1 NS-VOF模式簡介 16
3-2 賓漢雙黏性流沖刷模式 16
3-3 公路橋梁設計規範之簡介 18
3-4 研究方法與特色 19
第四章 實驗設置與模式驗證 21
4-1 NS-VOF 模式自由液面預測驗證 21
4-1-1 潰壩湧潮與柱狀結構物之交互作用 21
4-1-2 水位驗證之實驗設置 22
4-1-3 水位驗證之數值設定 22
4-1-4 閘門抽取位移歷線 23
4-1-5 水位剖面驗證 24
4-2 賓漢雙黏性流沖刷模式驗證 26
4-2-1 賓漢雙黏性流模式與解析解之驗證 26
4-2-2 實驗數據驗證與數值模式設定 27
4-2-3 平衡沖刷坑之驗證 28
第五章 湧潮與沖刷坑交互作用之動態模擬分析 43
5-1 橋墩型式之沖刷與動床效應 44
5-1-1 橋墩之設計參考 44
5-1-2 數值模式設定 45
5-2 原始橋墩之三維模擬分析 46
5-2-1 原始橋墩之沖刷坑發展 46
5-2-2 原始橋墩之沖刷坑剖面分析 47
5-3 橋墩補樁後之三維模擬分析 47
5-3-1 橋墩補樁後之沖刷坑發展 48
5-3-2 橋墩補樁後之沖刷坑剖面分析 49
5-4 不同橋墩型態之平衡沖刷坑深度等深線分析 49
5-5 橋墩型態差異之壓力分析 50
5-5-1 原始橋墩基樁壓力分析 50
5-5-2 橋墩補樁後之基樁壓力分析 51
5-6 浮木掛淤效應分析 52
5-6-1 浮木掛淤於兩座橋墩間之沖刷效應 53
5-6-2 浮木掛淤於橋墩上游側之沖刷效應 55
5-6-3 浮木掛淤於群基樁間之沖刷效應 57
5-6-4 極端掛淤案例之沖刷效應 58
5-6-5 浮木掛淤案例之平衡沖刷坑深度等深線分析 59
第六章 結論與建議 107
6-1 結論 109
6-2 建議 111
參考文獻 112
附錄一 數值方法 118
A.1 統御方程式 118
A.2 流體體積法 119
A.3 有限體積法 121
A.4 改良式投影法 123
A.5 部分網格法 125
A.6 移動固體法 126
A.7 大渦模擬法 126
附錄二 潰壩湧潮衝擊方柱陣列之基準問題建立與數值模擬分析 132
B.1 潰壩湧潮之生成階段 132
B.2 重點時刻之實驗水位快照圖與模擬結果套疊 136
B.3 重點時刻之實驗數化資料 136
附錄三 雙園大橋之地電阻調查結果 146
附件四 TRUCHAS之原始碼與輸入檔設定 148
附錄五 口試書面答覆表 167
參考文獻 [1] Assier-Rzadkiewicz, S., Mariotti, C., and Heinrich, P., "Numerical Simulation of Submarine Landslides and their hydraulic effects,” J. waterway, port, Coastal and Ocean Engineering, Vol. 123, No. 4, pp. 149-157, 1997.
[2] Balmforth, N. J. and Liu, J. J., “Roll waves in mud,” J. Fluid Mech., Vol. 519, pp. 33-54, 2004.
[3] Bird, R. B., Dai, G. C., and Yarusso, B. J., “The rheology and flow of viscoplastic materials,” Rev of Chemical Engrg., Vol. 1, No. 1, pp. 1-70, 1983.
[4] Borrero, J., Yeh H., Peterson, C., Chadha, R. K., Latha, G. and Katada, T., “Learning from earthquakes: The great Sumatra earthquake and Indian Ocean tsunami of December 26, 2004,” EERI Special Earthquake Report, March 2005.
[5] Brørs, B., “Numerical modeling of flow and scour at pipelines,” J. Hydr. Eng. Vol. 125, pp. 511–523, 1999.
[6] Chuang, M. H., “Developing a Two-way Coupled of Moving Solid Method for Solving Landslide Generated Tsunamis,” Master dissertation, National Central University, 2009.
[7] Clowes and Sons, Ltd., “Numerical simulation of pipeline local scour with lee-wake effects,” Int. J. Offshore Polar Eng., Vol. 10, pp. 195–199, 2000.
[8] Colicchio, G., Colagrossi, A., Greco, M. and Landrini, M., “Free-surface flow after a dam Break: a comparative study,” Ship Technol, Res. Vol. 49, No. 3, pp. 95–104, 2002.
[9] Danielsen, F., Sorensen, M. K., Olwig, M. F., Selvam, V., Parish, F., Burgess, N. D., Hiraishi, T., Karunagaran, V. M., Rasmussen, M. S., Hansen, L. B., Quarto A., Suryadiputra, N., “The Asian tsunami: a protective role for coastal vegetation,” Science Vol. 310, pp. 643, 2005.
[10] Dey, S., Bose, S.K. and Sastry, G.L.N. 1, “Clear water scour at circular piers: a model,” Journal of Hydraulic Engineering, Vol. 121, No. 12, pp. 869-876, 1995.
[11] Dey, S., and Barbhuiya, A. K., “Turbulent flow field in a scour hold at a semicircular abutment,” Can. J. Eng., Vol. 32, pp. 213-232, 2005.
[12] Ettema, R., Kirkil, G. and Muste, M., “Similitude of large-scale turbulence in experiments on local scour at cylinders,” Journal of Hydraulic Engineering, ASCE Vol. 132, No. 1, pp. 33–40, 2006.
[13] Fukui, Y., Nakamura, M., Shiraishi, H., and Sasaki, Y., “Hydraulic study on tsunami,” Coastal Engineering, Japan, Vol. 6, pp. 67–82, 1963a.
[14] Harlow, F. H. and Welch, J. E., 1965, “Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface,” Phys. Fluids, Vol. 8, pp. 2182-2189, 1965.
[15] Hirt, C. W., Nichols, B. D. and Romero, N. C., “SOLA-a numerical solution algorithm for transient fluid flows,” Los Alamos Scientific Laboratory, LA-582, pp. 1-50, 1975.
[16] Hirt, C. W. and Nichols, B. D., “Volume of Fluid (VOF) method for the dynamics of free surface boundaries,” J. Comput. Phys., pp.201-225, 1981.
[17] Huang, X. and Garcia, M. H., “A HerschalYHulkley model for mud flow down a slope,” J. Fluid Mech., Vol. 374, pp. 305-333, 1998.
[18] International Tsunami Survey Team (ITST) “The 26 December 2004 Indian Ocean tsunami:Initial findings from Sumatra,” Western Coastal and Marine Geology, U.S. Geological Survey, 2005, Internet Resource, http://walrus.wr.usgs.gov/tsunami/sumatra05/.
[19] Julien, P. Y. and Lan, Y., “Rheology of hyperconcentrations,” J. Hydraul. Eng. ASCE, Vol. 117, pp. 346-353, 1991.
[20] Kobayashi, N. and Lawrence, A. R., “Cross-shore sediment transport under breaking solitary waves,” J. Geophys. R. Vol. 109, C03047, 2004.
[21] Lacey, G., “Stable channels in alluvium,” Paper 4736, Minutes of the Proc., Institution of civil Engineers, William, 1930.
[22] Liu, P. L. F., Wu, T. R., Raichlen, Synolakis, C. E. and Borrero, J. C., “Runup and rundown generated by three-dimensional sliding masses,” J. Fluid Mech, pp. 107-144, 2005.
[23] Liu, K.F. and Mei, C.C., “Slow spreading of a sheet of Bingham fluid on an inclined plane,” J. Fluid Mech. Vol. 207, pp. 505-529, 1989.
[24] Liu, X. and García, M. H., “A three-dimensional numerical model with free water surface and mesh deformation for local sediment scour,” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 134, No. 4, pp. 203-217, 2008.
[25] Mao, Y., “The interaction between a pipeline and an erodible bed,” PhD dissertation, Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, Lyngby, Denmark, 1986.
[26] Mascarenhas, A., Jayakumar, S., “An environmental perspective of the post-tsunami scenario along the coast of Tamil Nadu, India: Role of sand dunes and forests,” Journal of Environmental Management, Vol. 89, pp. 24–34, 2008.
[27] Melville, B. W., and Raudkivi, A. J., “Flow characteristics in local scour at bridge piers,” Journal of Hydraulic Research, Vol. 15, No. 4, pp. 373-380, 1977.
[28] Mei, C. C. and Yuhi, M., “Slow flow of a Bingham fluid in a shallow channel of finite width,” J. Fluid Mech., Vol. 431, pp. 135-159, 2001.
[29] Monaghan, J. J. and Kos, A., “Scott Russell’s wave generator,” Phys. Fluids, Vol. 12, No. 3, pp. 622–630, 2000.
[30] Monaghan, J. J., “Simulating free surface flows with SPH,” J. Comput. Phys, Vol. 110, pp. 399–406, 1994.
[31] Monaghan, J. J., “Smoothed particle hydrodynamics,” Rep. Prog. Phys, Vol. 68, pp. 1703–1759, 2005.
[32] Ng, C. and Mei, C.C., “Roll waves on a shallow layer of mud modeled as a power-law fluid,” J. Fluid Mech. Vol. 263, pp. 151-183, 1994.
[33] Noguchi, K., Sato, S. and Tanaka, S. “Large-scale experiments on tsunami overtopping and bed scour around coastal revetment,” Proc. Coastal Eng. Vol. 44, pp. 296–300, 1997.
[34] O’Brien, J.S. and Julien, P.Y., “On the importance of mudflow routing,” Proceedings of the 2nd International Conference on Debris Flow Hazards Mitigation, Taipei, Taiwan, Aug. 16-18, pp. 677-686, 2000.
[35] Olsen, N. R. B., and Melaaen, M. C., “Three-dimensional calculation of scour around cylinder,” J. Hydraul. Eng., Vol. 119, No. 9, pp. 1048-1054, 1993.
[36] Olsen, N. R. B., and Kjellesvig, H. M., “Three-dimensional numerical flow modeling for estimation of maximum local scour depth,” J. Hydraul. Res., Vol. 36, No. 4, pp. 579-590, 1998.
[37] Osher, S. and Sethian, J. A., “Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Phys. 79, 12-49, 1988.
[38] Richardson, J. E. and Panchang, V.G., “Three-dimensional simulation of scour-inducing flow at bridge piers,” J. Hydraul. Eng., Vol. 124, No. 5, pp. 530-540, 1998.
[39] Roulund, A., Sumer, B. M., Fredsoe, J. and Michelsen, J. “3D mathematical modeling of scour around a circular pile in current,” Proc., 7th Int. Symposium on River Sedimentation and 2nd Int. Symposium on Environmental Hydraulics 98, Hong Kong, 1999.
[40] Shao, S. and Lo, E. Y. M., “Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface,” Advances in Water Resources, Vol. 26, pp. 787-800, 2003.
[41] Sheppard, D.M., Odeh, M. and Glasser, T., “Large scale clear-water local pier scour experiments,” Journal of Hydraulic Engineering, ASCE Vol. 130, No. 10, pp. 957–963, 2004.
[42] Tanaka, N., Nandasena, N. A. K., Jinadasa, K. B. S. N., Sasaki, Y., Tanimoto, K., Mowjood, M. I. M., “Developing effective vegetation bioshield for tsunami protection,” Civil Engineering and Environmental Systems, Vol. 26, No. 2, pp. 163—180, 2009.
[43] Uda, T., Omata, A. and Yokoyama, Y., “Experimental study on tsunami run-up – the effects of coastal topography and structures against tsunami run-up,” Technical Note of Public Works Research Institute 2486, 1987.
[44] Wu, T. R., “A numerical study of three-dimensional breaking waves and turbulence effects,” PhD dissertation, Cornell University, 2004.
[45] Zhao, M., Cheng, L. and Zang, Z., “Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents,” Coastal Engineering, Vol. 57, pp. 709–721, 2010.
[46] Zhao, Z. and Fernando, H. J. S., “Numerical simulation of scour around pipelines using an Euler-Euler coupled two phase model,” Env. Fluid Dyn., Vol. 7, No. 2, pp. 121-142, 2007.
[47] 交通部,「橋梁設計規範」,民國98年12月頒布。
[48] 吳祚任,「2011日本大海嘯之研究與省思」,土水會刊,第三十八卷第二期,2011年3月。
[49] 財團法人中華顧問工程司,「莫拉克颱風雙園大橋災害致災原因分析研究委託服務工作─期初報告書」,交通部公路總局第三區養護工程處,2010年4月。
[50] 國道45號線、5本の橋が落下,TBS系JNN,2011年3月12日。取自http://news.tbs.co.jp/newsi_sp/shinsai2011/tbs_newseye4671736.html
[51] 國道45號の橋流失6カ所に=國交省,時事通信,2011年3月12日。取自http://news.nicovideo.jp/watch/nw40990
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2011-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明