博碩士論文 976401005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:35.172.217.40
姓名 張惠玲(Hui-Ling Chang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 LAPS 短時(0-6小時)系集降水機率預報之評估與應用
(Evaluation and application of the short-range (0-6 hr) PQPFs from an ensemble prediction system based on LAPS)
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 宜蘭地區秋冬季降雨特性之研究
★ 台灣地區午後對流降水特性之分析★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案
★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 利用VAD技術及回波保守方程反演渦度場
★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 在地形上由都卜勒風場反演熱動力場
★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於颱風等劇烈天氣的可預報度很低,因而發展可信的短時系集預報系統(ensemble prediction system, EPS)是相當重要的。本研究主要是利用局地分析和預報系統(Local Analysis and Prediction System, LAPS)發展時間延遲之多模式系集預報系統(time-lagged multimodel EPS),並以此產生短時(0-6小時)的定量降水機率預報(probabilistic quantitative precipitation forecasts, PQPFs)。最終目的在於針對颱風,提供使用者更具參考價值的系集降水預報,並幫助使用者藉由系集機率預報(ensemble probabilistic forecasts, EPFs)做出最好的決策。

校驗結果顯示LAPS EPS具有良好的系集離散度-預報能力關係(spread-skill relationship)以及相當的區辨能力(discrimination ability)。因此,即便LAPS PQPFs有明顯的濕偏差,仍然可以透過線性迴歸(linear regression, LR)方法校正預報偏差而大大提升預報能力。我們針對影響校正結果的兩個重要因子進行敏感度測試,包括:(1)不同訓練樣本之測試;(2)觀測資料正確性不一致之測試。測試(1)的結果顯示:校正結果對於訓練樣本非常敏感。訓練樣本必須和驗證樣本有一致(或非常相似)的預報偏差分布,才能得到好的校正結果。測試(2)的結果顯示:由於海洋與陸地的觀測資料正確性不一致,加上絕大部份的觀測是由海洋樣本所貢獻;因此,海洋和陸地必須分區校正才能確保兩者都有較好的校正結果。

然而,在評估天氣預報系統的可用性時,不僅要考慮預報品質的良窳,同時也要考量使用者在日常生活中,以此預報資訊做決策所能得到的經濟效益。透過相對操作特徵(relative operating characteristic, ROC)面積量測的區辨能力是評估預報品質的重要指標之一,並且和預報系統的經濟價值(economic value, EV)有密切的關係。因此,本研究的另外兩個重點分別是探討ROC和EV之間一致和相關的特性,並說明使用者如何利用LAPS PQPFs做決策,以得到最大的經濟效益。比較系集機率預報和單一預報(deterministic forecasts, DFs)的ROC和EV,可以發現:系集機率預報具有較高的區辨能力,且可提供較大的經濟價值給較多的使用者;這樣的優勢隨著降水事件的強度增加而愈加顯著。關於校正的敏感度實驗顯示:預報系統的區辨能力或是所能提供的最大經濟價值(maximum EV, EVmax) 對於預報偏差並不敏感。由於中央山脈對於颱風降水的地形鎖定效應,LAPS PQPFs在山區比在平地有較佳的區辨能力和較高的可信度,並可提供較大的經濟價值給成本損失比(cost-loss ratio)較高的使用者。此外,我們發現:山區和平地使用者的經濟價值差異,主要是預報系統在兩區域有不同的區辨能力所造成。我們同時舉例說明,即便使用者的成本損失比無法被明確得知,仍然可以利用系集機率預報做出最好的決策,得到最大的經濟價值。
摘要(英) Due to the low predictability in severe weather prediction such as typhoon forecasting, it is important to develop a reliable short-range ensemble prediction system (EPS).This study aims to develop the short-range (0-6h) probabilistic quantitative precipitation forecasts (PQPFs) of typhoons from time-lagged multimodel ensembles using the Local Analysis and Prediction System (LAPS). The ultimate goal is to provide valuable precipitation forecasts for typhoons based on the EPS and help the users optimize their decision making by using the ensemble probabilistic forecasts (EPFs).

The LAPS ensemble prediction system (EPS) has a good spread-skill relationship and good discriminating ability. Therefore, though it is obviously wet-biased, the forecast biases can be corrected to improve the skill of PQPFs through a linear regression (LR) calibration procedure. Sensitivity experiments for two important factors affecting calibration results are also conducted, including: (1) the experiments on different training samples, and (2) the experiments on the inconsistency of observation accuracy. The first point reveals that the calibration results are sensitive to the training samples. Calibration should be performed based on consistent forecast biases between training and validation samples The second factor indicates that the accuracy of observation is inconsistent in the sea and land areas, and samples are dominated by the ocean ones. Therefore, individual calibration for these two areas is needed to ensure better calibration results.

The measure of the usefulness of weather forecasts not only considers the forecast quality, but also the economic benefit associated with the actual use in the daily decision-making process of users. Discrimination ability, which can be assessed by the relative operating characteristic (ROC), is one of the characteristics for evaluating the quality of a forecast and is closely related to the economic value (EV) provided by the same forecast system. Therefore, the other two points in this study is to investigate the consistent and related characteristics between ROC and EV using LAPS PQPFs, and illustrate how to optimize the decision making by using the EPFs. Comparing the ROC and EV derived from EPFs and deterministic forecasts (DFs), EPFs have the advantage over DFs in respect of the discrimination and EV, and such an advantage grows with increasing precipitation intensity. Results from sensitivity experiment on calibration show that the discrimination ability and the maximum EV (EVmax) obtained from a forecast system are insensitive to forecast bias. Due to the terrain-locking effect on typhoon rainfall, LAPS PQPFs have greater discrimination ability, provide more reliable forecast information and offer higher EV to users with high cost-loss ratios in the mountain area than the plain area. Results show that the difference of EV between the mountain and plain areas is mainly attributed to the different discrimination ability in these areas. We also illustrate that even without explicitly knowing the cost-loss ratio, users can still optimize their decision-making and obtain the EVmax by using the EPFs.
關鍵字(中) ★ 預報校驗
★ 經濟價值
★ 相對操作特徵
★ 系集預報系統
★ 校正
★ 定量降水機率預報
關鍵字(英) ★ Forecast verification
★ economic value
★ relative operating characteristic (ROC)
★ ensemble prediction system (EPS)
★ calibration
★ probabilistic quantitative precipitation forecasts (PQPFs)
論文目次
Chinese Abstract i
English Abstract ii
Acknowledgments iii
Table of Contents iv
List of Figures vi
List of Tables xi
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Background 1
1.3 Outline 9
Chapter 2. Model and data 10
2.1 Short-range forecast System LAPS 10
2.2 Observation data for forecast verification 12
2.3 LAPS ensemble configuration and PQPF products 13
2.3.1 Time-lagged multimodel ensemble configuration 13
2.3.2 PQPF products 14
Chapter 3. Methodology 15
3.1 Calibration methodology 15
3.2 Relative operating characteristic (ROC) 16
3.3 Economic value (EV) 18
Chapter 4. Results from verification of PQPFs 21
4.1 Forecast Bias 21
4.2 Discriminating ability and forecast skill 22
4.3 Spread-skill relationship in the LAPS EPS 24
4.4 Advantage of a time-lagged configuration 25
Chapter 5. Sensitivity experiments on calibration 27
5.1 Experiments on different training samples 27
5.2 Experiments on the inconsistency of observation accuracy 29
Chapter 6. Characteristics of ROC and EV 32
6.1 Analysis of ROC and EV 32
6.1.1 ROC 32
6.1.2 EV 33
6.2 Comparison of EPFs and DFs 34
6.2.1 ROC 34
6.2.2 EV 35
Chapter 7. Sensitivity of ROC and EV 37
7.1 Effect of calibration 37
7.2 Effect of Terrain 39
7.3 Effect of ensemble size on EV 42
Chapter 8. Applications of PQPFs 44
8.1 An example with explicitly known cost-loss ratio 44
8.2 An example without explicitly known cost-loss ratio 45
Chapter 9. Summary and future work 49
9.1 Summary 49
9.2 Future work 53
Reference 55
Appendix 60
Figures 65
Tables 88
參考文獻 Albers, S., 1995: The LAPS wind analysis. Wea. Forecasting, 10, 342–352.
___, J. McGinley, D. Birkenheuer, and J. Smart, 1996:The Local Analysis and Prediction System (LAPS):Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273–287.
Atger, F., 2003: Spatial and interannual variability of the reliability of ensemble-based probabilistic forecasts: Consequences for calibration. Mon. Wea. Rev., 131, 1509–1523.
Birkenheuer, D., 1999: The effect of using digital satellite imagery in the LAPS moisture analysis. Wea. Forecasting, 14, 782–788.
Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, Y. Zhu, 2005: A comparison of the ECMWF, MSC and NCEP global ensemble prediction systems, Mon. Wea. Rev., 133, 1076–1097.
Chang, H. L., H. Yuan, P. L. Lin, 2012: Short-Range (0–12 h) PQPFs from Time-Lagged Multimodel Ensembles Using LAPS. Mon. Wea. Rev., 140, 1496–1516.
Chang, H. L., S.-C. Yang, H. Yuan, P. L. Lin, 2014: Analysis of relative operating characteristic and economic value using the LAPS ensemble prediction system in Taiwan area. Mon. Wea. Rev. (submitted).
Cheung, K. KW., 2001: A review of ensemble forecasting techniques with a focus on tropical cyclone forecasting, Meteorol. Appl., 8, 315–332.
Chien, F.-C., Y.-C. Shao, B. J-D. Jou, P.-L.Lin, M.-J.Yang, J.-S.Hong, J.-H.Teng, and H.-C. Lin, 2003:Precipitation verification of the MM5 ensemble forecast. Atmos. Sci., 31, 77 – 94. (Chinese with English abstract)
Chien, F.-C., and B. J-D. Jou, 2004: MM5 ensemble mean precipitation forecasts in the Taiwan area for three early summer convective (Mei-yu) seasons. Wea. Forecasting, 19, 735–750.
___, Y.-C. Liu, B. J-D. Jou, P.-L. Lin, J.-S. Hong, and L.-F. Hsiao, 2005:MM5 ensemble rainfall forecasts during the 2003 Mei-yu season. Atmos. Sci., 33, 255–275. (Chinese with English abstract)
Davis, C. A., and S. Low-Nam, 2001: The NCAR-AFWA tropical cyclone bogussing scheme. A report prepared for the Air Force Weather Agency (AFWA), 12 pp. [Available onlineathttp://www.mmm.ucar.edu/mm5/mm5v3/tc-bogus.html.]
Donner, L. J., 1988: An initialization for cumulus convection in numerical weather prediction models. Mon. Wea. Rev., 116, 377–385.
Eckel, F. A., and M. K. Walters, 1998: Calibrated probabilistic quantitative precipitation forecasts based on the MRF ensemble. Wea. Forecasting, 13, 1132–1147.
Gandin, L. S., and A. H. Murphy, 1992:Equitable skill scores for categorical forecasts. Mon. Wea. Rev., 120, 361–370.
Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203–1211.
Gourley, J. J., J. Zhang, R. A. Maddox, C. M. Calvert, and K. W. Howard, 2001: A real-time precipitation monitoring algorithm - Quantitative Precipitation Estimation Using Multiple Sensors (QPE-SUMS). Preprints, Symp. on Precipitation Extremes: Prediction, Impacts, and Responses, Albuquerque, Amer. Meteor. Soc., 57–60.
Grell, G., J. Dudhia, and D. Stauffer, 1995: A description of the Fifth-generation Penn State/NCAR Mesoscale Model (MM5).NCAR Tech Note NCAR/TN-398+STR, 138 pp.
Hamill, T.M., 1997: Reliability diagrams for multicategory probabilistic forecasts. Wea. Forecasting, 12, 736–741.
___, 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550–560.
___, and J. Juras, 2006: Measuring forecast skill: Is it real skill or is it the varying climatology? Quart. J. Roy. Meteor. Soc., 132, 2905–2923.
___, J. S. Whitaker, and S. L. Mullen, 2006: Reforecasts: An Important Dataset for Improving Weather Predictions. Bull. Amer. Meteor. Soc., 87, 33–46
Harms, D. E., R. V. Madala, S. Raman, and K. D. Sashegyi, 1993: Diabatic initialization tests using the Naval Research Laboratory limited-area numerical weather prediction model. Mon. Wea. Rev., 121, 3184–3190.
Harvey, L. O. Jr., K. R. Hammond, C. M. Lusk, and E.F. Mross, 1992:The application of signal detection theory to weather forecasting behavior. Mon. Wea. Rev., 120, 863–883.
Heckley, W. A., 1985: Systematic errors of the ECMWF operational forecasting model in tropical regions. Quart. J. Roy. Meteor. Soc., 111, 709–738.
Hsu, W.-R., and A.H. Murphy, 1986: The attributes diagram: A geometrical framework for assessing the quality of probability forecasts. Int. J. Forecasting, 2, 285–293.
Jian, G.-J., S.-L.Shieh, and J. Mcginley, 2003: Precipitation associated with Typhoon Sinlaku (2002) in Taiwan area using the LAPS diabatic initialization for MM5.TAO, 14, 1–28.
Jian, G.-J., and J. Mcginley, 2005: Evaluation of a short-range forecast system on quantitative precipitation forecasts associated with tropical cyclones of 2003 near Taiwan. J. Meteor. Soc. Japan, 83, 657–681.
Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Wiley, 254 pp.
Kalnay, E., and A. Dalcher, 1987: Forecasting forecast skill, Mon. Wea. Rev., 115, 349–356.
Kats, R. W., and A. H., Murphy, 1997: Economic value of weather and climate forecasts. Cambridge University Press, 222 pp.
Krishnamurti, T. N., J. Xue, H. S. Bedi, K. Ingles, and D. Oosterhof, 1991:Physical initialization for numerical weather prediction over the tropics. Tellus, 43AB, 53–81
Lu, C., H. Yuan, B. Schwartz, and S. Benjamin, 2007: Short-range forecast using time-lagged ensembles. Wea. Forecasting, 22, 580–595.
Mason., I.B., 1982. A model for assessment of weather forecasts. Australian Meteorological Magazine, 30, 291–303.
Mason, S. J., and N. E. Graham, 1999:Conditional probabilities, relative operating characteristics, and relative operating levels.Wea. Forecasting, 14, 713–725.
Mass, C. F., 2003: IFPS and the future of the National Weather Service. Wea. Forecasting, 18, 75–79.
Mohanty, U. C., A. Kasahara, and R. Errico, 1986 : The impact of diabatic heating on the initialization of a global forecast model. J. Meteor. Soc. Japan, 64, 805–817.
Mullen, S. L., and R. Buizza, 2004: Calibration of probabilistic precipitation forecasts from the ECMWF EPS by an artificial neural network. Preprints, 17th Conf. on Probability and Statistics in the Atmospheric Sciences, Seattle, WA, Amer. Meteor. Soc., J5.6.
Murphy, A.H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595–600.
___, 1977: The value of climatological, categorical and probabilistic forecasts in the cost-loss ratio situation. Mon. Wea. Rev., 105, 803–816.
___, 1978: Hedging and the mode of expression of weather forecasts. Bull. Amer. Meteor. Soc., 59, 371–373.
___, and Ehrendorfer, M., 1987: On the relationship between the accuracy and value of forecasts in the cost-loss ratio situation, Wea. Forecasting , 2, 243–251.
___, 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting, 8, 281–293.
Mylne, K. R., 1999: The use of forecast value calculations for optimal decision making using probabilistic forecasts. Preprints, 17th Conf. on Weather Analysis and Forecasting, Denver, CO, Amer. Meteor. Soc., 235–239.
Palmer, T. N., and R. Hagedorn, 2006: Predictability of weather and climate. Cambridge University Press. 702 pp.
Richardson, D. S., 2000: Skill and relative economic value of the ECMWF ensemble prediction system. Quart. J. Royal Meteor. Soc., 126, 649–667.
___, 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Quart. J. Roy. Meteor. Soc., 127, 2473–2489.
Roebber, P. J. and L. E., Bosart, 1996: The complex relationship between forecast skill and forecast value: a real-world analysis. Wea. Forecasting, 11, 544–559.
Schultz, P., 1995: An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Rev., 123, 3331–3343.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note TN-475_STR, 125 pp.
Su, S. H., H. C. Kuo, L. H. Hsu and Y. T. Yang, 2012: Temporal and Spatial Characteristics of Typhoon Extreme Rainfall in Taiwan. J. Meteor. Soc. Japan, 90, 721–736.
Swets, J.A., 1973. The relative operating characteristic in psychology. Science, 182, 990–1000.
___, 1979. ROC analysis applied to the evaluation of medical imaging techniques. Investigative Radiology, 14, 109–121.
___, and R. M. Picket, 1982: Evaluation of diagnostic systems: Methods from Signal Detection Theory. Academic Press, 253 pp.
___, 1988: Measureing the accuracy of diagnostic systems. Science, 240, 1285–1293.
Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: the generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330.
___, and ___, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297–3319.
___, Y. Zhu, and T. Marchok, 2001: On the ability of ensembles to distinguish between forecasts with small and large uncertainty. Wea. Forecasting, 16, 436–477.
van den Dool, H. M., and L. Rukhovets, 1994: On the weights for an ensemble-averaged 6–10-day forecast. Wea. Forecasting, 9, 457–465.
Vislocky, R. L., and J. M. Fritsch, 1997: Performance of an advanced MOS system in the 1996–97 national collegiate weather forecasting conference. Bull. Amer. Meteor. Soc., 78, 2851–2857.
Whitaker, J. S., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. Mon. Wea. Rev., 126, 3292–3302.
Wilks, D. S. and T. M., Hamill, 1995: Potential economic value of ensemble forecasts. Mon. Wea. Rev., 125, 3565–3575.
___, 2006: Statistical Methods in the Atmospheric Sciences (2nd Ed). Academic Press, 627 pp.
Yang, M.-J., B. J.-D. Jou, S.-C. Wang, J.-S. Hong, P.-L. Lin, J.-H. Teng, and H.-C. Lin, 2004: Ensemble prediction of rainfall during the 2000–2002 Mei-Yu seasons: Evaluation over the Taiwan area, J. Geophys. Res., 109, D18203, doi: 10.1029 / 2003JD004368.
Yeh, T. C., and R. L. Elsberry, 1993: Interaction of typhoons with the orography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 3193–3212.
Yuan, H., S. L. Mullen, X. Gao, S. Sorooshian, J. Du, and H. H. Juang, 2005: Verification of probabilistic quantitative precipitation forecasts over the southwest United States during winter 2002/03 by the RSM ensemble system. Mon. Wea. Rev., 133, 279–294.
___, X. Gao, S. L. Mullen, S. Sorooshian, J. Du, and H. H. Juang, 2007a: Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network. Wea. Forecasting, 22, 1287–1303.
___, S. L. Mullen, X. Gao, S. Sorooshian, J. Du, and H. H. Juang, 2007b: Short-range probabilistic Quantitative Precipitation Forecasts over the Southwest united states by the RSM ensemble system. Mon. Wea. Rev., 135, 1685–1698.
___, J. A. McGinley, P. J. Schultz, C. J. Anderson, and C. Lu, 2008: Short-range precipitation forecasts from time-lagged multimodel ensembles during the HMT-West-2006 campaign. J. Hydrometeor., 9, 477–491.
Zhu, Y., Z. Toth, R. Wobus, D. S., Richardson, and K. Mylne, 2002:The economic value of ensemble-based weather forecasts. Bull. Amer. Meteor. Soc., 83, 73–83.
___, 2005: Ensemble forecast: A new approach to uncertainty and predictability, Advance in Atmospheric Sciences, 22, No. 6, 781–788.
指導教授 林沛練、廖宇慶、楊舒芝
(Pay-Liam Lin、Yu-Chieng Liou、Shu-Chih Yang)
審核日期 2014-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明