博碩士論文 976403007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.237.9.125
姓名 李奕德(I-Te Lee)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 福爾摩沙衛星三號掩星觀測資料同化電離層與熱氣層耦合模式
(Assimilation of radio occultation data observed by FORMOSAT-3/COSMIC into a coupled Thermosphere/Ionosphere model)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本博士論文旨在利用系集卡曼濾波器,同化福爾摩沙衛星三號掩星觀測資料所反演之電離層電子濃度剖面,以結合美國國家大氣研究中心高層大氣實驗室所發展的熱氣層與電離層耦合環流電動模式,求得熱氣層與電離層的最佳化狀態。福衛三號提供高空間、時間解析度之電子濃度剖面,接近均勻全球分布的觀測資料,有助於重建全球電離層電漿三維結構。熱氣層與電離層耦合環流模式是透過數值方法解析非線性物理方程式,模擬熱氣層與電離層中的中性大氣與電漿的分佈與特性。美國國家大氣研究中心所發展的資料同化開發模組是一套以系集卡曼濾波器為架構的開放軟體,能夠簡化資料同化的開發過程。
於本耦合模式中,由於熱氣層與電離層的狀態受到外在環境參數控制,因此無法僅以擾動模式初始場的方式產生系集樣本,必須進一步以擾動環境參數的方式產生具有代表性的系集樣本。為了瞭解模式中主要的環境參數與模擬後之電離層狀態相關性,首先選定太陽輻射強度、高緯度電位強度、大氣潮汐變化等模式中的主要環境參數進行相關性研究。結果發現電離層電子濃度變化受到大氣潮汐中的全日潮與半日潮的影響相對較小,主要仍然是受到太陽輻射強度與高緯度電位強度的作用。有鑑於此,本論文所使用的系集樣本,將針對太陽輻射強度與高緯度電位強度以高斯擾動的方式的產生。此外,為了讓系集樣本的電子濃度剖面除了在電離層層峰濃度有顯著變化外,也能在電離層層峰高度上有著明顯的差異,更引進了一個倍增參數調整全球的電磁交互作用漂移,使得系集樣本中的電離層層峰高度亦能夠具有顯著的差異性。
在同化福衛三號真實觀測資料之前,先建立觀測系統模擬實驗來設定環境參數與檢驗系集卡曼濾波器同化熱氣層與電離層耦合模式之表現。實驗結果顯示,本同化系統需要採用90個以上的系集樣本才能夠顯著降低均方根誤差,並表現出系統特徵。為了降低採樣誤差,除了在水平方向設定限地化參數,也須要在垂直方向上設定對應之限地化參數,並規範各個模式狀態的極值範圍以避免同化結果出現不具物理性的數值。模擬實驗結果更指出即使系統中只有同化電離層觀測資料,但透過系集卡曼濾波器亦可同時調整模式內其他不具觀測資料之中性大氣參數。
在完成觀測系統模擬實驗之相關測試後,真實福衛三號電離層觀測資料即可同化至系統中進行相關研究。福衛三號自2006年4月發射升空後,任務主要涵蓋太陽活動極小時期。為了評估同化系統在不同地磁活動強度下的表現與差異,於衛星進入任務軌道完成佈局後,分別選擇一個地磁寧靜時期與一個地磁擾亂時期進行分析。除此之外,為了檢視同化觀測資料後所出現的現象是否真實存在於電離層中,同化結果將與地面電離層雷達觀測與全球二維全電子含量相互比較。結果發現模式在觀測資料的輔助之下,能夠重現電離層中時空尺度較小的電漿結構,並在接近春分時期呈現出南北半球不對稱的現象。然而,在同化結果中仍然有部分違背物理規範的現象發生,且有多數發生於夜間的福衛三號觀測資料在同化過程中遭到此同化系統排除在外。這些仍然需要透過相關的研究分析並且逐步改善模式內部的物理方程式或參數設定,才能在未來避免這些情形發生。
由於福衛三號任務在國際間獲得廣大迴響與正面評價,台灣國家太空中心規畫於2016年開始分兩階段發射福爾摩沙七號衛星,以接替已逐漸接近衛星設計年限的福衛三號,以延續中性大氣與電離層之掩星觀測任務。在福衛七號的任務規畫中,共計將有12顆衛星分布於兩組軌道面,接收三組不同國家的全球導航系統衛星之訊號,估計可提供的資料量約為現今福衛三號所能提供的四倍。在大量觀測資料的優勢下,可在短時間累積觀測資料重建全球電離層三維電漿結構,縮短電離層資料同化的時間間隔。從福衛七號的觀測系統模擬實驗結果中發現,福衛七號發射後將有助於研究電離層中時空尺度較小的結構與變化,有效監測太空天氣變化與強化預報結果。
本論文內容涵蓋此同化系統自發展初期測試結果與同化實際觀測資料後的現象研究,並進一步驗證同化結果的真實性與評估福衛七號未來在科學研究上的重要性。未來更待相關的研究分析與進一步改善,讓此熱氣層與電離層資料同化系統有機會能夠成為真正用來監控與預報太空天氣的作業系統。
摘要(英) This dissertation presents efforts to assimilate FORMOSAT-3/COSMIC (F3/C) GPS Occultation Experiment (GOX) observations into the National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) by means of ensemble Kalman filtering (EnKF). The F3/C electron density profiles (EDPs) globally distributed which provide an excellent opportunity to study the three-dimensional (3D) ionospheric electron density structure. NCAR TIE-GCM simulates the Earth’s thermosphere and ionosphere by self-consistently solving for the coupled nonlinear equations of hydrodynamics, neutral and ion chemistry, and electrodynamics. F3/C EDPs are combined with the TIE-GCM simulations by an EnKF algorithms implemented in the NCAR Data Assimilation Research Testbed (DART) to obtain ’the best’ estimate of the current ionospheric state.
Since the thermosphere and ionosphere are dominated by external forces, it is difficult to generate ensemble members simply by perturbing the model initial conditions. First of all, model sensitivity experiments are designed to examine the model responses associated with forcing parameters such as the solar 10.7cm flux, the hemispheric power, the cross-tail potential, and the phase and amplitude of migrating tides. Furthermore, multiplying factors of the vertical E × B drift are introduced to diversify peak height altitude of electron density distribution over height. According to the model sensitivity experiments, the ensemble generation strategy is decided for following comprehensive EnKF study.
Observing system simulation experiments are conducted in the primary stage to investigate the optimal ensemble size, suitable horizontal and vertical localization lengths, and performance of assimilation system for F3/C EDPs as well as approaches to prevent unphysical values of state vectors. The results suggest that this EnKF assimilation system for coupled thermosphere-ionosphere model can be effectively applied to assimilate the F3/C EDPs by using 90 ensemble members, setting the vertical localization length equal to 1,000 km with additional simple bounds for particular state vectors.
Assimilation analyses obtained with real F3/C EDPs during geomagnetic quiet time and disturbed conditions are further compared with independent ground-based observations and global ionospheric maps as well as the F3/C profiles themselves. The comparison shows the improvement of the primary ionospheric parameters such as NmF2 and hmF2 and furthermore suggests that some small scale physically meaningful structures that are absent in TIE-GCM simulations are resolved. Nevertheless, some unrealistic signatures appear in the results, and high rejection rates of observations due to the outlier threshold and quality control are also found in the assimilation experiments. These issues are analyzed to identify the model biases, for example, the nighttime O+ flux at the upper boundary in TIE-GCM is decreased to reduce the nighttime rejection rates.
In the near future, the FORMOSAT-7/COSMIC-2 (F7/C2) constellation will be deployed in 2016 and provide more than 12,000 occultation soundings per day. An additionally OSSE is conducted in this dissertation to determine the impact of F7/C2 on ionospheric weather monitoring and forecasting. Results show that the denser F7/C2 observations can reconstruct 3D ionospheric structure with a dramatically shorter data accumulation period, and significantly reduce the assimilation analysis error. The results also represent a major advance in ionospheric weather monitoring of the F7/C2 mission.
Finally, this dissertation presents comprehensive investigation of the DART/TIE-GCM assimilation system for the F3/C ionospheric observations. There are a number of promising results as reported herein. However, it still needs more investigations and analysis to improve the system to be used as an operational system for monitoring and forecasting the ionospheric space weather in the future.
關鍵字(中) ★ 電離層
★ 福衛三號
★ 資料同化
關鍵字(英) ★ Ionosphere
★ FORMOSAT-3/COSMIC
★ Data Assimilation
論文目次 摘 要 i
Abstract iii
Acknowledgement v
Table of Content vii
List of Figure ix
List of Table xv
Chapter 1. Introduction 1
1.1. Motivation and Objective 1
1.2. Thermosphere 4
1.3. Ionosphere 6
1.4. Ionospheric Observations 15
1.5. Ionospheric Models 20
1.6. Data Assimilation Methods 21
Chapter 2. Assimilation System 35
2.1. NCAR TIE-GCM 36
2.2. FORMOSAT-3/COSMIC 38
2.3. Data Assimilation Research Testbed (DART) 44
2.4. Assimilation System Setup 46
Chapter 3. Ensemble Generating Strategy 49
3.1. Sensitivity of Input Parameters 49
3.2. Solar Flux Index, F10.7 51
3.3. Hemispheric Power (HP) and Cross-tail Potential (CTP) 55
3.4. Diurnal Tide 61
3.5. Semidiurnal Tide 67
3.6. Ensemble Generating Strategy 81
Chapter 4. Observing System Simulation Experiments 87
4.1. Experiments Setup 87
4.2. Ensemble Size Investigation 91
4.3. Fixing Nonphysical Value Problem 94
4.4. Defining Vertical Localization Length 98
4.5. Assimilation System Performance 106
4.6. Remarks on the OSSE Results 109
Chapter 5. Assimilation of Real Observations 111
5.1. Assimilation System Description 111
5.2. Assimilation Results 112
5.3. Adjusted Ionospheric Signatures 119
5.4. Comparison with Ionosonde Observations 122
5.5. Quality Control and Outlier Threshold Criteria 130
5.6. Revising O+ Flux at Model Upper Boundary 136
5.7. Validation With the CHAMP Neutral Density 141
5.8. Challenge and Improvement 144
Chapter 6. Response in Geomagnetic Disturbed Period 145
6.1. Geomagnetic Condition 145
6.2. Storm Signature 147
6.3. Comparison With Global Ionospheric Maps 151
6.4. Limitations and Possible Solutions 156
Chapter 7. Contribution to the FORMOSAT-7 Mission 157
7.1. Mission Description 157
7.2. Synthetic Observation 159
7.3. Impact Investigation 161
7.4. Future Application 165
Chapter 8. Conclusion 168
Reference 172
參考文獻 Anderson, D. N., A theoretical study of the ionospheric F-region equatorial anomaly, I, Theory, Planet. Space Sci., 21, 409-419, 1973.
Anderson, J. L., An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001.
Anderson, J. L., A local least squares framework for ensemble filtering, Mon. Wea. Rev., 131, 634–642, 2003.
Anderson, J. L., An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus, 59A, 210–224, 2007.
Anderson, J. L., Spatially and temporally varying adaptive covariance inflation for ensemble filters, Tellus, Ser. A, 61, 72–83, 2009.
Anderson, J. L., and S. L. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999.
Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. F. Arellano, The Data Assimilation Research Testbed: A community data assimilation facility, Bull. Am. Meteorol. Soc., 90, 1283–1296, doi:10.1175/2009BAMS2618.1, 2009.
Appleton, E. V., Two anomalies in the ionosphere, Nature, 157, 691, 1946.
Bernhardt, P. A., C. L. Siefring. A. Yau,"Space Based Systems for Ionospheric Density and Scintillation Mapping in Conjunction with Incoherent Scatter Radars," AMISR Science Planning Meeting, Asilomar, CA, Oct. 12, 2006
Bouttier, F., and P. Courtier, Data assimilation concepts and methods, Meteorological Training Course Lecture Notes, internal report on ECMWF website, http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/ASSIM_CONCEPTS/index.html, 1999.
Boyle, C. B., P. H. Reiff, and M. R. Hairston, Empirical polar cap potentials, J. Geophys. Res., 102(A1), 111–125, doi:10.1029/96JA01742, 1997.
Burgers, G., P. J. van Leeuwen, and G. Evensen, Analysis scheme in the ensemble Kalman filter, Mon. Wea. Rev., 129, 1719-1724, 1998.
Chapman, S., The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth, Proc. Phys. Soc. London, 43, 26-45, 1931.
Chapman, S. and R.S. Lindzen, Atmospheric Tides, D. Reidel Press, Dordrecht, Holland, 200 pp, 1970.
Cohn, S. E., An introduction to estimation theory, J. Meteor. Soc. Japan, 75 (1B), 257-288, 1997.
Courtier, P., J. Derber, R. Errico, J-F. Louis, and T. Vukicevic, Important literature on the use of adjoint, variational methods and the Kalman filter in meteorology, Tellus, 45A, 342–357, 1993.
Daley, R., Atmospheric Data Analysis, Cambridge Univ. Press, New York, 1991.
Dimet, F. X. L., and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus, Series A, Dynamic meteorology and oceanography, 38(2), 97-110, 1986.
Duncan, R. A., The equatorial F region of the ionosphere, J. Atmos. Terr. Phys., 18, 89, 1960.
Evensen, G., Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143–10 162, 1994.
Evensen, G., Data Assimilation: The Ensemble Kalman Filter, 330 pp., Springer, Berlin, 2009.
Fang, T. W., D. Anderson, T. Fuller-Rowell, R. Akmaev, M. Codrescu, G. Millward, J. Sojka, L. Scherliess, V. Eccles, J. Retterer, J. Huba, G. Joyce, A. D. Richmond, A. Maute, G. Crowley, A. Ridley, G. Vichare, Comparative Studies of Theoretical Models in the Equatorial Ionosphere, AGU monograph on modeling the Ionosphere-Thermosphere system, paper in press, 2012.
Flattery, T. W., Hough functions, Teoh. Rep. 21, 175 pp., Dep. of the Geophys. Sci., Univ. of Chicago, Chicago, 111., 1967.
Fong, C. J., Eddy Yang, and Nick Yen, FORMOSAT-3/COSMIC Mission Satellite Performance: Five Years in Orbit, paper presented in 5th FORMOSAT-3/COSMIC Data User’s Workshop and International Conference on GPS Radio Occultation, Taipei, Taiwan, 13-15 April, 2001.
Fuller‐Rowell, T. J., E. A. Araujo‐Pradere, C.Minter, M.Codrescu, P. Spencer,D. Robertson, and A. R. Jacobson (2006), US‐TEC:A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real‐time GPS data, Radio Sci., 41, RS6003, doi:10.1029/2005RS003393.
Gaspari, G., and S. Cohn, Construction of correlation functions in two and three dimensions, Q. J. R. Meteorol. Soc., 125(554), 723–757, ISSN:1477‐870X, 1999.
Hagan, M. E. and J. M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 107(D24), 4754, doi: 10.1029/2001JD001236, 2002.
Hagan, M. E. and J. M. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 108(A2), 1062, doi:10.1029/2002JA009466, 2003.
Hajj, G. A., and L. J. Romans, Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment, Radio Sci., 33(1), 175-190, doi:10.1029/97RS03183, 1998.
Hajj, G. A., B. D. Wilson, C. Wang, X. Pi, and I. G. Rosen, Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter, Radio Sci., 39, RS1S05, doi:10.1029/2002RS002859, 2004
Hamill, Thomas M., Jeffrey S. Whitaker, Chris Snyder, Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. Wea. Rev., 129, 2776–2790, 2001.
Hanson, W. B., and R. J. Moffett, Ionization transport effects in the equatorial F region, J.Geophys. Res., 71, 5559, 1966.
Heelis, R. A., J. K. Lowell, and R. W. Spiro, A model of the high-latitude ionospheric convection pattern, J. Geophys. Res., 87(A8), 6339–6345, doi:10.1029/JA087iA08p06339, 1982.
Houtekamer, P. L., Herschel L. Mitchell, A sequential ensemble Kalman filter for atmospheric data asssimilation, Mon. Wea. Rev., 129, 123–137, 2001.
Houtekamer, P. L., and H. L. Mitchell, Ensemble Kalman filtering, Q. J. R. Meteorol. Soc., 131(613), 3269–3289, 2006.
Hsu, M. L., P. K. Rajesh, J. Y. Liu, L. C. Tsai, H. F. Tsai, C. H. Lin, K. F. Dymond, C. Coker, D. H. Chua, S. A. Budzien, and C. Z. Cheng, Ionospheric electron density concurrently derived by TIP and GOX of FORMOSAT-3/COSMIC, Terr. Atmos. Ocean. Sci., 20, 207-214, doi: 10.3319/TAO.2008.04.24.02, 2009.
Jazwinski, A. H., Stochastic Processes and Filtering Theory, 376pp, Academic Press, 1970.
Kakinami, Y., J. Y. Liu, and L. C. Tsai, A comparison of a model using the FORMOSAT-3/COSMIC data with the IRI model, Earth Planets Space, 64, 545–551, 2012.
Kassa, T., B. Damtie and E. Yizengaw, The Response of Ethiopian Ionosphere to the Magnetic Storm of 11 October 2008, Latin American Journal of Physics Education. Vol. 6, No. 2, 2012.
Kelley, M. C., The Earth’s ionosphere: plasma physics and electrodynamics, International Geophys. Series, 43, Academic Press, 1989.
Kelley, M. C., V. K. Wong, N. Aponte, C. Coker, A. J. Mannucci, and A. Komjathy, Comparison of COSMIC occultation‐based electron density profiles and TIP observations with Arecibo incoherent scatter radar data, Radio Sci., 44, RS4011, doi:10.1029/2008RS004087, 2009.
Kelley, M. C., F. S. Rodrigues, J. J. Makela, R. Tsunoda, P. A. Roddy, D. E. Hunton, J. M. Retterer, O. de La Beaujardiere, E. R. de Paula, and R. R. Ilma, C/NOFS and radar observations during a convective ionospheric storm event over South America, Geophys. Res. Lett., 36, L00C07, doi:10.1029/2009GL039378, 2009.
Laroche, S., P. Gauthier, M. Tanguay, S. Pellerin, and J. Morneau, Evaluation of the operational 4D-Var at the Meteorological Service of Canada, Proc. Fourth WMO Int. Symp. on Assimilation of Observations in Meteorology andOceanography, Prague, Czech Republic, World Meteorological Organization, p. 139, 2005.
Lee, I. T., W. Wang, J. Y. Liu, C. Y. Chen, and C. H. Lin, The ionospheric midlatitude trough observed by FORMOSAT‐3/COSMIC during solar minimum, J. Geophys. Res., 116, A06311, doi:10.1029/2010JA015544, 2011.
Lee, I. T., T. Matsuo, A. D. Richmond, J. Y. Liu, W. Wang, C. H. Lin, J. L. Anderson, and M.-Q. Chen, Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering, J. Geophys. Res., doi:10.1029/2012JA017700, 117, A10318, doi:10.1029/2012JA017700, 2012.
Lei, J., et al., Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results, J. Geophys. Res., 112, A07308, doi:10.1029/2006JA012240, 2007.
Lin, C. H., J. Y. Liu, T. W. Fang, P. Y. Chang, H. F. Tsai, C. H. Chen, and C. C. Hsiao, Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC, Geophys. Res. Lett., 34 , L19101, 10.1029/2007GL030741, 2007.
Lin, C. H., J. Y. Liu, C. C. Hsiao, C. H. Liu, C. Z. Cheng, P. Y. Chang, H. F. Tsai, T. W. Fang, C. H. Chen, and M. L. Hsu, Global ionospheric structure imaged by FORMOSAT-3/COSMIC: Early results, Terr. Atmos. Ocean. Sci., 20, 171-179, doi: 10.3319/TAO.2008.01.18.01, 2009.
Lin, C. H., C. H. Liu, J. Y. Liu, C. H. Chen, A. G. Burns, and W. Wang, Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT‐3/COSMIC, J. Geophys. Res., 115, A03308, doi:10.1029/2009JA014084, 2010.
Liu, J. Y., Y. I. Chen, and J. S. Lin, Statistical investigation of the saturation effect in the ionospheric foF2 versus sunspot, solar radio noise, and solar EUV radiation, J. Geophys. Res., 108(A2), 1067, doi:10.1029/2001JA007543, 2003.
Liu, J. Y., C. Y. Lin, C. H. Lin, H. F. Tsai, S. C. Solomon, Y. Y. Sun, I. T. Lee, W. S. Schreiner, and Y. H. Kuo, Artificial plasma cave in the low‐latitude ionosphere results from the radio occultation inversion of the FORMOSAT‐3/COSMIC, J. Geophys. Res., 115, A07319, doi:10.1029/2009JA015079, 2010.
Lorenc, A. C., Analysis methods for numerical weather prediction, Quart. J. Roy. Meteor. Soc., 112, 205-240, 1986.
Lorenc, A. C., The potential of the ensemble Kalman filter for NWP-A comparison with 4D-Var, Quart. J. Roy. Meteor. Soc., 129, 3183–3203, 2003.
Matsuo, T., and E. A. Araujo‐Pradere, Role of thermosphere‐ionosphere coupling in a global ionospheric specification, Radio Sci., 46, RS0D23, doi:10.1029/2010RS004576, 2011.
Matsuo, T., I. T. Lee, and J. L. Anderson, Thermospheric mass density specification using an ensemble Kalman filter, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50162, 2013.
Matsuo, T., I. T. Lee, J. L. Anderson, A. D. Richmond, Upper atmosphere data assimilation with an ensemble Kalman filter, paper presented at 6th FORMOSAT-3/COSMIC Data Users’ Workshop, Boulder, CO, 30 Oct - 1 Nov, 2012.
McNamara, L. F., and P. J. Wilkinson, Spatial correlations of foF2 deviations and their implications for global ionospheric models: 1. Ionosondes in Australia and Papua New Guinea, Radio Sci., 44, RS2016, doi:10.1029/2008RS003955, 2009.
Potier, C. and C. Verchen, Numerical variational methods for data filtering and interpolation, J. Atmos. Oceanic Technol., 2, 528–538, 1985.
Ratcliffe, J. A., An Introduction to the Ionosphere and Magnetosphere, Cambridge University Press, Cambridge, 1972.
Reigber, C., H. Lühr, and P. Schwintzer, CHAMP mission status, Adv. Space Res., 30 (2), 129-134, doi:10.1016/S0273-1177(02)00276-4, 2002.
Richmond, A. D., Ionospheric electrodynamics using magnetic apex coordinates, J. Geomagn. Geoelectr., 47, 191–212, 1995.
Richmond, A. D., E. C. Ridley, and R. G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19, 601–604, 1992.
Rishbeth, H. and O. K. Garriot, Introduction to Ionospheric Physics, Academic Press, New York and London, 1969.
Rishbeth, H., F region storms and thermospheric circulation, J. Atmos. Terr. Phys., 37, 1055–1064, 1975.
Rishbeth, H., The equatorial F-layer: progress and puzzles, Ann. Geophysicae, 18, 730-739, 2000.
Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson, A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15, 1325–1328, 1988.
Rocken, C., Y.-H. Kuo, W. Schreiner, D. Hunt, S. Sokolovskiy, and C. McCormick, COSMIC system description, Terr. Atmos. Oceanic Sci., 11(1), 21–52, 2000.
Schreiner, W. S., S. V. Sokolovskiy, C. Rocken, and D. C. Hunt, Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 34(4), 949-966, doi:10.1029/1999RS900034, 1999.
Schreiner, W., C. Rocken, S. Sokolovskiy, S. Syndergaard, and D. Hunt, Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission, Geophys. Res. Lett., 34, L04808, doi:10.1029/2006GL027557, 2007.
Schreiner, W., C. Rocken, S. Sokolovskiy, and D. Hunt, Quality Assessment of COSMIC/FORMOSAT-3 GPS Radio Occultation Data Derived from Single- and Double-Difference Atmospheric Excess Phase Processing. GPS Solutions, 14(1), 13-22, doi:10.1007/s10291-009-0132-5, 2009.
Schunk, R. W., L. Scherliess, and J. J. Sojka, Recent approaches to modeling ionospheric weather, Adv. Space Res., 31, 819-828, 2003.
Shim, J. S., L. Scherliess, R. W. Schunk, and D. C. Thompson, Spatial correlations of day-to-day ionospheric total electron content variability obtained from ground-based GPS, J. Geophys. Res., 113, A09309, doi:10.1029/2007JA012635, 2008.
Stigler, S. M., Who Discovered Bayes’ Theorem ?, Amer. Statist., 37,290-296, 1983.
Syndergaard, S., A new algorithm for retrieving GPS radio occultation total electron content, Geophys. Res. Lett., 29(16), 1808, doi:10.1029/2001GL014478, 2002.
Tsai, H. F., J. Y. Liu, C. H. Lin, and M. L. Hsu, FORMOSAT-3/COSMIC Observations of the ionospheric auroral oval development, GPS Solutions, 91-97, doi 10.1007/s10291-009-0137-0, 2010.
U.S. Standard Atmosphere, U.S. Government Printing Office, Washington, D.C., 1976.
Wang, Xuguang, Craig H. Bishop, A Comparison of Breeding and Ensemble Transform Kalman Filter Ensemble Forecast Schemes, J. Atmos. Sci., 60, 1140–1158, 2003.
Weimer, D. R., Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi:10.1029/2004JA010884, 2005.
Wright, J. M., Vertical cross sections of the ionosphere across the geomagnetic equator, NBS Tech. Note 138, U.S. Dept. of Commer., Washington, D. C., 1962.
Yue, X., W. S. Schreiner, J. Lei, S. V. Sokolovskiy, C. Rocken1, D. C. Hunt, and Y.-H. Kuo, Error analysis of Abel retrieved electron density profiles from radio occultation measurements, Ann. Geophys., 28, 217–222, 2010.
Zakharenkova, I. E., A. Krankowski, I. I. Shagimuratov, Yu. V. Cherniak, A. Krypiak-Gregorczyk, P. Wielgosz, and A. F. Lagovsky, Observation of the ionospheric storm of October 11, 2008 using FORMOSAT-3/COSMIC data, Earth Planets Space, 64(6), 505-512, doi:10.5047/eps.2011.06.046, 2012
Zhang, Y., and L. J. Paxton, An empirical Kp-dependent global auroral model based on TIMED/GUVI FUV data, J. Atmos. Sol. Terr. Phys., 70, 1231, doi:10.1016/j.jastp.2008.03.008, 2008.
指導教授 劉正彥 審核日期 2013-6-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明