參考文獻 |
﹝1﹞ 林世勛,「注入井配置對背斜構造中二氧化碳地質封存潛勢之影響:以桃園台地為例」,國立中正大學應用地球物理研究所,碩士論文,101年。
﹝2﹞ 吳承諺,「在控制壓力積聚條件下台灣西部深層鹽水含水層二氧化碳地質封存數值模擬」,國立中正大學,碩士論文,102年。
﹝3﹞ 邱千軒,「鹽水層二氧化碳封存之溶液相及離子相二氧化碳前鋒推進方程式之研究」,國立成功大學,碩士論文,100年。
﹝4﹞ 邱琪惠,「注儲二氧化碳之飽和度前鋒在鹽水層移棲行為研究」,國立成功大學資源工程學系,碩士論文,102年。
﹝5﹞ 許旆華,「台灣中部地區潛在二氧化碳封存層與蓋層之礦物組成分析及地體構造意義」,國立中央大學,碩士論文,102年。
﹝6﹞ 焦中輝、林俊余、俞旗文、盧佳遇,「台西盆地南段晚中新世至更新世沉積地層作為碳地質封存層之探討研究」,?冶,第55卷第1期,109~128頁,100年。
﹝7﹞ 楊健男,「二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例」,國立中央大學地球物理研究所,碩士論文,99年。
﹝8﹞ 楊慶中,「二氧化碳地質封存水力-力學耦合行為之研究-以彰濱工業區為例」,國立中央大學,碩士論文,102年。
﹝9﹞ 賴郡曄,「數值模擬二氧化碳–水–長石系統之化學及礦物反應變化」,國立成功大學地球科學系,碩士論文,101年。
﹝10﹞ Alkan, H., Y. Cinar, and E. B. Ulker, 2010, “Impact of capillary pressure, salinity and in situ conditions on CO2 injection into saline aquifers”, Transport in Porous Media, Vol. 84, p.799-819.
﹝11﹞ Anderson, G., 2005, Thermodynamics of Natural Systems, 2nd ed., Cambridge University Press, pp.664.
﹝12﹞ Andre, L., P. Audigane, M. Azaroual, A. Menjoz, 2007, “Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France)”, Energy Conversion and Management, Vol. 48, p.1782-1797.
﹝13﹞ Appelo, C. A. J., D. Postma, 2005, Geochemistry, Groundwater and Pollution, 2nd ed., CRC Press, pp.683.
﹝14﹞ Athy, L. F., 1930, “Density, porosity, and compaction of sedimentary rocks”, AAPG Bulletin, Vol. 14, p.1-24.
﹝15﹞ Azaroual, M., C. Kervevan, M. V. Durance, S. Brochot, P. Durst, 2004, SCALE2000 (V3.1): Logiciel de calculs thermodynamiques et cinetiques applicables aux saumures petrolieres, hydrothermales et industrielles (User’s Manual in French), BRGM.
﹝16﹞ Bachu, S., W. D. Gunter, E. H. Perkins, 1994, “Aquifer disposal CO2: hydrodynamic and mineral trapping”, Energy Conversion and Management, Vol. 35(4), p.269-279.
﹝17﹞ Bachu, S., 2008, “CO2 storage in geological media: Role, means, status and barriers to deployment”, Progresss in Energy and Combustion Science, Vol. 34, p.254-273.
﹝18﹞ Bear, J., 1988, Dynamics of Fluids in Porous Media, (corrected republication of the work published by Elsevier, 1972), Dover Publications, pp.784.
﹝19﹞ Bonilla, M. G., 1975, A Review of Recently Active Fault in Taiwan, Open-File Report 75-41. U. S. Geological Survey, Menlo Park, CA.
﹝20﹞ Carman, P. C., 1954, Flow of Gas through Porous Media, Butterworths.
﹝21﹞ CC&ST, Carbon Capture and Sequestration Technologies, official website at http://sequestration.mit.edu
﹝22﹞ Celia, M. A., J. M. Nordbotten, 2009, “Practical modeling approaches for geologicalstorage of carbon dioxide”, Ground Water, Vol. 47(5), p.627-638.
﹝23﹞ CGAL, 2013, Computational Geometry Algorithms Library (CGAL) User and Reference Manual: All Parts, official website at http://www.cgal.org/
﹝24﹞ Cheng, C.-T., Chiou, S.-J., Lee, C.-T., Tsai, Y.-B., 2007, “Study on probabilistic seismichazard maps of Taiwan after Chi-Chi earthquake”, Journal of GeoEngineering Vol. 2(1), p.19-28.
﹝25﹞ Class, H., A. Ebigbo, R. Helmig, H. K. Dahle, J. M. Nordbotten, M. A. Celia, P. Audigane, M. Darcis, J. Ennis-King ‧ Y. Fan ‧ B. Flemisch ‧ S. E. Gasda, M. Jin, S. Krug, D. Labregere, A. N. Beni, R. J. Pawar, A. Sbai, S. G. Thomas, L. Trenty, L. Wei, 2009, “A benchmark study on problems related to CO2 storage in geologic formations: Summary and discussion of the results”, Computer & Geoscience, Vol. 13, p.409-434.
﹝26﹞ Corey, A. T., 1954, “The interrelation between gas and oil relative permeabilities” Producers Monthly, Vol. 19 (1), p.38-41.
﹝27﹞ Dickinson, G., 1953, “Geological aspects of abnormal reservoir pressures in Gulf CoastLouisana”, AAPG Bulletin, Vol. 37(2), p.410-432.
﹝28﹞ Domenico, P. A. and F. W. Schwartz, 1988, Physical and Chemical Hydrogeology, 2nd ed., Wiley, pp.528.
﹝29﹞ Dong, J.-J., J.-Y. Hus, W.-J. Wu, T. Shimamoto, J.-H. Hung, E.-C. Yeh, Y.-H. Wu, H. Sone, 2010 “Stress-dependence of the permeability and porosity of sandstoneand shale from TCDP Hole-A”, International Journal of Rock Mechanics & Mining Sciences, Vol. 47, p.1141-1157.
﹝30﹞ Doughty, C., K. Pruess, S. M. Benson, B. M. Freifeld, 2004, Hydrological and Geochemical Monitoring for a CO2 Sequestration Pilot in a Brine Formation, Tech-nical Report LBNL-55104. Lawrence Berkeley National Laboratory, Berkeley, CA.
﹝31﹞ Ennis-King, J., L. Paterson, 2007, “Coupling of geochemical reactions and convective mixing in the long-term geological storage of carbon dioxide” International Journal of Greenhouse Gas Control, Vol. 1, p.86-93.
﹝32﹞ Garcia, J., K. Pruess, 2000, Local Grid Refinement for Multi-Scale Geothermal Reservoir Simulation with TOUGH2, Technical Report LBNL-45646. LawrenceBerkeley National Laboratory, Berkeley, CA.
﹝33﹞ Gasda, S. E., S. Bachu, and M. A. Celia, 2004, “The potential for CO2 leakage from storage sites in geological media: analysis of well distribution in mature sedimentary basins. Environmental well distribution in mature sedimentary basins”, Environmental Geology, Vol. 46, p.707-720.
﹝34﹞ Gaus, I., M. Azaroual, I. Czerichowski-Lauriol, 2005, “Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea)”, Chemical Geology, Vol. 217, p.310-337.
﹝35﹞ Gaus, I., P. Audigane, L. Andre, J. Lions, N. Jacquemet, P. Durst, I. Czerichowski-Lauriol, and M. Azaroual, 2008, “Geochemical and solute transport modelling for CO2 storage, what to expect from it?”, International Journal of Greenhouse Gas Control, Vol. 2, p.605-625.
﹝36﹞ Ghali, S., 2008, Introduction to Geometric Computing, Springer, pp.342.
﹝37﹞ Ghesmat, K., H. Hassanzadeh, and, J. Abedi, 2011a, “The impact of geochemistry on convective mixing in a gravitationally unstable diffusive boundary layer in porous media: CO2 storage in saline aquifers”, Journal of Fluid Mechanics, Vol. 673, p.480-512.
﹝38﹞ Ghesmat, K., H. Hassanzadeh, and J. Abedi, 2011b, “The effect of anisotropic dispersion on the convective mixing in long-term CO2 storage in saline aquifers” Fluid Mechanics And Transport Phenomena, Vol. 57(3), p.561-570.
﹝39﹞ Gunter, W. D., B. Wiwchar and E. H. Perkins, 1997, “Aquifer disposal of CO2-rich greenhouse gases: Extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling”, Mineral. Petrol., Vol. 59, p.121-140.
﹝40﹞ Gunter, W. D., E. H. Perkins, I. Hutcheon, 2000, “Aquifer disposal of acid gases: modelling of water-rock reactions for trapping of acid wastes”, Applied Geochemistry, Vol. 15, p.1085-1095.
﹝41﹞ Helgeson, H. C. D. H. Kirkham, D. C. Flowers, 1981, “Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures IV: Calculation of activity coefficients, osmotic coeffieients, and apparent molal and standard and relative partial molal properties to 600 C and 5Kb”, American Journal of Science, Vol. 218, p.1249-1516.
﹝42﹞ Hesse, M. A., F. M. Orr Jr, and H. A. Tchelepi, 2008, “Gravity currents with residual trapping”, Journal of Fluid Mechanics, Vol. 611, p.35-60.
﹝43﹞ Hoholick, J. D., T. Metarko, P. E. Potter, 1984, “Regional variations of porosity andcement: St. Peter and Mount Simon sandstones in Illinois Basin”, AAPG Bulletin, Vol. 68 (6), p.753-764.
﹝44﹞ Holloway, S., D. Savage, 1993, “The potential for aquifer disposal of carbon dioxide in the UK”. In: Riemer, W.F. (Ed.), Proceedings of the International EnergyAgency Carbon Dioxide Disposal Symposium, Pergamon Press, Oxford. EnergyConservation and Management, Vol. 34(9–11), p.925-932.
﹝45﹞ Hsieh, B.-Z., L. Nghiem, C.-H. Shen, Z.-S. Lin, 2013, “Effects of complex sandstone–shale sequences of a storage formation on the risk of CO2 leakage: Case study from Taiwan”, International Journal of Greenhouse Gas Control, Vol. 17, p.376-387.
﹝46﹞ IPCC, 2005, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press (In Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.), Prepared by Working Group III of the Intergovernmental Panel on Climate Change).
﹝47﹞ Juanes, R., E. J. Spiteri, F. M. Orr Jr., and M. J. Blunt, 2006, “Impact of relative permeability hysteresis on geological CO2 storage”, Water Resources Research, Vol. 42, W12418.
﹝48﹞ Kaldi, J. G., 2011, Carbon Capture and Storage (A Present Lecture of CO2CRC), AOGS 2011, Taipei, Taiwan.
﹝49﹞ Land, C. S., 1968, “Calculation of imbibition relative permeability for two- and three-phase flow from rock properties”, Society of Petroleum Engineers Journal, Vol. 8(2), p.149-156.
﹝50﹞ Lasaga, A. C., J. M. Soler, J. Ganor, T. E. Burch, and K. L. Nagy, 1994, “Chemical weathering rate laws and global geochemical cycles”, Geochimica et Cosmochimica Acta, Vol. 58(10), p.2361-2386.
﹝51﹞ Lichtner, P. C., 1988, “The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium”, Geochimica et Cosmochimica Acta, Vol. 52, p.143-165.
﹝52﹞ Lin, A. T., A. B. Watts, 2002, “Origin of the West Taiwan Basin by orogenic loading andflexure of a rifted continental margin”, Journal of Geophysical Research, Vol. 107(B9), ETG 2-1–ETG 2-19.
﹝53﹞ Lin, A. T., A. B. Watts, S. P. Hesselbo, 2003, “Cenozoic stratigraphy and subsidence his-tory of the South China Sea Margin in the Taiwan region”, Basin Research Vol. 15, p.453-478.
﹝54﹞ Lin, C.-W., Chang, H.-C., Lu, S.-T., Shih, T.-S., Shih, W.-J., 2000, Active Fault Mapof Taiwan, 2nd ed. Central Geological Survey Special Publication, No. 13, pp.122.
﹝55﹞ MacMinn, C. W., M. L. Szulczewski and R. Juanes, 2010, “CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow”, Journal of Fluid Mechanics, Vol. 662, p.329-351.
﹝56﹞ MacMinn, C. W., M. L. Szulczewski and R. Juanes, 2011, “CO2 migration in saline aquifers. Part 2. Capillary and solubility trapping”, Journal of Fluid Mechanics, Vol. 688, p.321-351.
﹝57﹞ Marini, L., 2006, Geological Sequestration of Carbon Dioxide, Volume 11: Thermodynamics, Kinetics, and Reaction Path Modeling, Elsevier Science, pp.470.
﹝58﹞ Mayer, K. U., E. O. Frind and D. W. Blowes, 2002, “Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions”, Water Resources Research, Vol. 38(9), WR0862.
﹝59﹞ McDonald, M.G., Harbaugh, A.W., 1988. A Modular Three-Dimensional Finite Differ-ence Ground-Water Flow Model, Techniques of Water-Resources Investigations 06-A1, U. S. Geological Survey, .pp.576.
﹝60﹞ Michael, K., A. Golab, V. Shulakova, J. Ennis-King, G. Allinson, S. Sharmaa, T. Aiken, 2010, Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations, International Journal of Greenhouse Gas Control, Vol. 4, p.659-667.
﹝61﹞ Mortenson, M. E., 2006, Geometric Modeling, 3rd ed., Industrial Press, pp.452.
﹝62﹞ Morton, G. M., 1966, A omputer Oriented Geodetic Data Base and A New Technique in File Sequencing, Technical Report, Ottawa, Canada: IBM Ltd.
﹝63﹞ Nordbotten, J. M., M. A. Celia, S. Bachu, 2004, “Analytical solutions for leakage rates through abandoned wells”, Water Resources Research, Vol. 40, W04204.
﹝64﹞ O’Rourke, J., 1998, Computational Geometry in C, 2nd ed., Cambridge University Press, pp.392.
﹝65﹞ Palandri, J. L. and Y. K. Kharaka, 2004, A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling, US Geological Survey Open File Report 2004-1068.
﹝66﹞ Parkhurst, D. L. and C. A. J. Appelo, 1999, User’s guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Water-Resources Investigations Report 99-4259.
﹝67﹞ Pau, G. S.H., J. B. Bell, K. Pruess, A. S. Almgren, M. J. Lijewski, K. Zhang, 2010, “High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers”, Advances in Water Resources, Vol. 33, p.443-455.
﹝68﹞ Peng, D. Y., and D. B. Robinson, 1976, “A New Two-Constant Equation of State”, Industrial and Engineering Chemistry: Fundamentals, Vol. 15, p.59-64.
﹝69﹞ Perkins, E. H., W. D. Gunter, 1995. A users manual for PATHARC.94: a reaction path-mass transfer program, Alberta Research Council Report ENVTR 95-11, Canada.
﹝70﹞ Pinder, G. F., and M. A. Celia, 2006, Subsurface Hydrology, Wiley.
﹝71﹞ Pruess, K., C. Oldenburg, and G. Moridis, 1999, TOUGH2 User’s Guide, Version 2.0,Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, LBNL-43134.
﹝72﹞ Pruess, K., J. Garcia, 2002, “Multiphase flow dynamics during CO2 disposal into saline aquifers”, Environmental Geology, Vol. 42, p.282-295.
﹝73﹞ Pruess, K., 2005, ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2,Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, LBNL-57592.
﹝74﹞ Pruess, K., and N. Muller, 2009, “Formation dry-out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation”, Water Resources Research, Vol. 45, W03402.
﹝75﹞ Pruess, K., 2009, “Formation dry-out from CO2 injection into saline aquifers: 2. Analytical model for salt precipitation”, Water Resources Research, Vol. 45, W03403.
﹝76﹞ Pruess, K., and J. Nordbotten, 2011, “Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock”, Transport in Porous Media, Vol. 90, p.135–151.
﹝77﹞ Raiz, A., M. Hesse, H. Tchelepi, and F. M. Orr, Jr, 2006, “Onset of convection in a gravitationally unstable, diffusive boundary layer in porous media”, Journal of Fluid Mechanics, Vol. 548, p.87-111.
﹝78﹞ Regnault, O., V. Lagneu, H. Catalette, H. Schneider, 2005, “Etude experimental de la reactivite du CO2 supercritique vis-a-vis de phases minerals pures”, Implications pour la sequestration geologique de CO2, Comptes Rendus Geosciences, Vol. 337, p.1331-1339.
﹝79﹞ Rigaux, P., M. Scholl, and A. Voisard, 2002, Spatial Database with Application to GIS, Morgan Kaufmann, pp.410.
﹝80﹞ Slider, H. C., 1976, Practical Petroleum Reservoir Engineering Methods: An Energy Concervation Science, Petroleum Publishing Company, pp.559.
﹝81﹞ Spycher, N.F., M.H. Reed, 1988, “Fugacity coefficients of H2, CO2, CH4, H2O and of H2O-CO2-CH4 mixtures: a virial equation treatment for moderate pressures and temperatures applicable to calculations of hydrothermal boiling”, Geochimical Cosmochimica Acta, Vol. 52, p.739-749.
﹝82﹞ Steefel, C. I. and A. C. Lasaga, 1994, “A Coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems”, American Journal of Science, Vol. 294, p.529-592.
﹝83﹞ Steefel, C. I. and K. T. B. MacQuarrie, 1996, Approaches to modeling reactive transport in porous media. In Reactive Transport in Porous Media (P. C. Lichtner, C. I. Steefel, and E. H. Oelkers, eds.), Rev. Mineral. 34, 83-125.
﹝84﹞ Sung, R.-T., M.-H. Li, J.-J. Dong, A. T.-S. Lin, S.-K. Hsu, C.-Y. Wang, and C.-N. Yang, 2014, “Numerical assessment of CO2 geological sequestration in sloping and layered heterogeneous formations: A case study from Taiwan”, International Journal of Greenhouse Gas Control, Vol. 20, p.168-179.
﹝85﹞ Taiwan Power Company, 2008, Taiwan Power Company Sustainability Report 2007, pp.50.
﹝86﹞ Taiwan Power Company, 2009, Taiwan Power Company Sustainability Report 2008, pp.88.
﹝87﹞ Taiwan Power Company, 2010, Taiwan Power Company Sustainability Report 2009, pp.80.
﹝88﹞ Taiwan Power Company, 2011, Taiwan Power Company Sustainability Report 2010, pp. 81.
﹝89﹞ Taiwan Power Company, 2012, Taiwan Power Company Sustainability Report 2011, pp.96.
﹝90﹞ Taiwan Power Company, 2013, Taiwan Power Company Sustainability Report 2012, pp.104.
﹝91﹞ Taron, J., D. Elsworth, K.-B. Min, 2009, “Numerical simulation of thermal-hydrologic- mechanical-chemical processes in deformable, fractured porous media”, International Journal of Rock Mechanics & Mining Sciences, Vol.46, p.842-854.
﹝92﹞ van Genuchten, M. TH., 1980, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Science Society of America Journal, Vol. 44, p. 892-898.
﹝93﹞ Verma, A., K. Pruess, 1988, “Thermohydrologic conditions and silica redistributionnear high-level nuclear wastes emplaced in saturated geological formations”, Journal of Geophysics Research, Vol. 93(B2), p.1159-1173.
﹝94﹞ Walter, A. L., E. O. Frind, D. W. Blowes, C. J. Ptacek, and J. W. Molson, 1994, “Modelingo f multicomponentr eactivet ransporti n groundwater 1. Model development and evaluation”, Water Resources Research, Vol. 30(11), p.3137-314.
﹝95﹞ Walter, A. L., 1995, “Multiphase non-isothermal transport of systems of reacting chemicals”, Water Resources Research, Vol. 31(7), p.1761-1772.
﹝96﹞ Watt, A., 2000, 3D Computer Graphics, 3rd ed., Addison Wesley, pp.624.
﹝97﹞ White, S. P., R. G. Allis, J. Moore, T. Chidsey, C. Morgan, W. Gwynn and M. Adams, 2005, “Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA”, Chemical Geology, Vol. 217, p.387-405.
﹝98﹞ Xu, T., J. A. Apps, and K. Pruess, 2004, “Numerical simulation of CO2 disposal by mineral trapping in deep aquifers”, Applied Geochemistry, Vol. 19, p.917-936.
﹝99﹞ Xu, T., J. A. Apps, and K. Pruess, 2005, “Mineral sequestration of carbon dioxide in a sandstone–shale system”, Chemical Geology, Vol. 217, p.295-318.
﹝100﹞ Xu, T., E. Sonnenthal, N. Spycher, and K. Pruess, 2006, TOUGHREACT User’s Guide: A Simulation Program for Non-isothermal Multiple Reactive Geochemical Transport in Variably Saturated Geologic Media, Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, LBNL-55460.
﹝101﹞ Xu, T., J. A. Apps, K. Pruess, H. Yamamoto, 2007, “Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation”, Chemical Geology, Vol. 242, p.319-346.
﹝102﹞ Xu, T., N. Spycher, E. Sonnenthal, G. Zhang, L. Zheng, and K. Pruess, 2011, “TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions”, Computers & Geosciences, Vol. 37, p.763-774.
﹝103﹞ Yamamoto, H., K. Zhang, K. Karasaki, A. Marui, H. Uehara, N. Nishikawa, 2009, “Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow”, International Journal of Greenhouse Gas Control, Vol. 3, p.586-599.
﹝104﹞ Yeh, G. T. and V. S. Tripathi, 1989, “A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components”, Water Resources Research, Vol. 25 (1), p.93-108.
﹝105﹞ Zhang, F., G. T. Yeh and J. C. Parker (ed.), 2012, Groundwater Reactive Transport Models, Bentham Science Publishers, pp.254. |