博碩士論文 980202001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:44.222.64.76
姓名 郭勁廷(Jing-ting Guo)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 差分干涉雷達地變形方向模糊的最佳分解
(Optimal Resolving Directional Ambiguity in DInSAR Deformation Mapping)
相關論文
★ 2.4GHz無線傳輸系統於遙測與GPS數據整合之研製★ 2.4GHz之無線電波室內傳播通道特性量測與分析
★ K波段地面鏈路降雨衰減效應之研究★ 多層非均勻介質之微波散射模擬分析
★ 全球衛星定位系統(GPS)接收器RF module設計與製作★ 全球衛星定位系統(GPS)接收器 基頻電路與天線之設計製作
★ Ka 波段地面鏈路降雨效應與植被遮蔽 效應之研究★ 地面遙測影像雷達發射與接收模組之設計
★ 合成孔徑雷達之移動目標物速度估測研究★ 微波散射理論於地表散射之研究
★ 一個新穎的方法來實現高光譜遙測影像分類★ 5.3GHz 昇頻器與降頻器設計與製作
★ 5.3GHz室內電波傳播特性量測與分析★ 地面遙測影像雷達及數位信號處理之設計
★ 5.3GHz射頻放大器模組之設計與製作★ 5.3GHz無線網路收發機之基頻電路設計與製作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 干涉雷達利用感測器收發訊號得到相位差對於地球表面資訊的萃取是很有用的技術。然而,有待討論的問題是單純用此技術得到的位移結果是相對於感測器的斜距方向,並非當地的垂直或水平位移,但若結合多觀測姿態就可以解決垂直和水平方向模糊的問題。
  本研究提出一個基於加權最小平方的最佳求解法,結合昇、降的軌道模式求解三維地變形。而此研究方法和過去不同的是求解結果為三維方向位移量並非斜距方向位移量,除了能直接了解當地地變形情形外和地變形中心外,同時也便於與水準測量或GPS量測的結果來做直接比較。假設所有的測量無論是昇或降軌道模式是不相互影響的、各個資料面互相獨立,但在不同的相位值和同調性是相關的,於此最佳線性估計的求解方法便可實現。為了進一步的驗證由ALOS- PALSAR多組的干涉結果在求解地變形結果是可靠的,必須與精密水準測量的結果比較。
  在良好的情況下使用ALOS/PALSAR資料經由本研究所提出之方法可以獲得準確的三維地變形量,靈敏度約10公分(L波段)。結合昇、降模式求解結果指出了在2007年到2010年的地變形主要是下陷的情形,而最大下陷速率是每年6.7公分(在最大下陷中心-溪湖)。在未來建議結合多衛星多觀測模式(多入射角、多方位方向)、長的和短的時間間距對地層下陷確實做長期監測。
摘要(英) Radar interferometry is a powerful technique for extracting information about the Earth’s surface using the phase difference between the signals arriving at the sensor antenna during repeated observations from the same platform. However, the problematic issue is that since radar senses and measures in slant range, it does not tell whether the displacement comes from horizontal or vertical direction, namely, a directional ambiguity inherently exists.
A method based on weighted least squares is proposed to resolve it by integrating both ascending and descending orbits in order to determine whether the deformation is of uplift type or of subsidence. The resolved deformation pattern into three directions is useful to understand the movement mechanism and also to facilitate the direct comparison with ground leveling or measurements. Assuming that all the measurements, whether descending or ascending, are uncorrelated and independent but with different phase variances depending on the coherence, best linear unbiased estimator may be derived. To better confirm the subsidence map derived from series ALOS-PALSAR image data takes, comparisons with the precision leveling survey were made.
Excellent agreement was obtained on both the spatial pattern and scale at centimeter resolution. Both ascending and descending mapping results indicate that the maximum subsidence rate in that period as about 6.7 cm/yr (at an epicenter). It was suggested that reliable deformation estimate is contingent upon the combination of long-term and short-term observations using dual-beam SAR image data sets preferably at different inclination angles.
關鍵字(中) ★ 差分干涉合成孔徑雷達
★ 三維地變形
關鍵字(英) ★ 3D deformation mapping
★ DInSAR
論文目次 中文摘要....................................................i
英文摘要 Abstract.........................................iii
致謝......................................................iv
目錄.......................................................v
圖目錄....................................................vii
表目錄.....................................................ix
第一章 緒論.................................................1
1-1 介紹...................................................1
1-1-1 DEM.................................................2
1-1-2 ALOS/PALSAR.........................................3
1-1-3 ENVISAT.............................................5
1-2 研究動機與目的...........................................6
1-3 文獻回顧...............................................7
1-4 研究方法...............................................8
1-5 論文架構...............................................8
第二章 合成孔徑雷達影像特性與基本原理...........................10
2-1 干涉合成孔徑雷達基本原理.................................10
2-1-1 重複軌道式干涉........................................10
2-1-2 InSAR幾何與證明......................................12
2-2 差分干涉合成孔徑雷達基本原理..............................15
2-2-1 數值地形模型.........................................17
2-2-2 地變形量測...........................................18
2-3 誤差來源分析...........................................20
2-4 形成干涉之限制條件及影響因素..............................21
第三章 差分干涉合成孔徑雷達影像處理與模擬.......................25
3-1 DInSAR影像模擬........................................25
3-1-1 DInSAR影像模擬流程...................................26
3-1-2 彰化雲林地區下陷背景模擬...............................27
3-1-3 相位雜訊模型(phase noise model)模擬...................28
3-2 DInSAR處理流程........................................34
3-3 相位資訊影像處理........................................35
3-3-1 相位濾波器...........................................36
3-3-2 全相位回復...........................................38
第四章 差分干涉合成孔徑雷達之三維地變形求解......................42
4-1 三維地變形求解..........................................42
4-2 最小平方法.............................................47
4-3 加權最小平方法..........................................48
4-4 加權矩陣..............................................49
4-5 三維地變形求解靈敏度.....................................52
4-6 三維地變形模擬求解......................................53
4-6-1 三維地變形求解之誤差分析...............................68
第五章 彰化雲林下陷地區觀測求解................................73
5-1 彰化雲林地區下陷背景.....................................73
5-2 觀測結果分析與比較......................................74
第六章 結論與未來展望........................................85
6-1 結論..................................................85
6-2 未來展望..............................................87
參考文獻...................................................88
參考文獻 [1] Fialko, Y., M. Simons, and D. C. Agnew, 2001: The complete (3-d) surface displacement field in the epicentral area of the 1999 mw 7.1 hector mine earthquake, California from space geodetic observations. Geophysical Research Letters, 28(16), 3063–3066.
[2] Wright, T., B. Parsons, and Z. Lu, 2004: Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett, 31:L01607.
[3] 王志添,陳錕山,2010,“多組態星載干涉雷達於地變形觀測研究”國立中央大學太空科學研究所博士論文
[4] Chang, Hsing-Chung, Linlin Ge, Hua Wang, Chris Rizos and Tony Milne, 2007, “Radar Interferometry for 3-D Mining Deformation Monitoring”, IGARSS 2007, 23-28 July ,pp.2090 – 2092.
[5] Rosen, P. A., S. Hensley, I. R. Joughin, F. K. Li, S. N. Madsen, E. Rodriguez, and R. M. Goldstein, 2000, “Synthetic Aperture Radar Interferometry”, Proc. IEEE, 88, 333– 382.
[6] Liang, L. S., C. T. Wang, K. S. Chen, Y. B. Tsai, A. J. Chen, 2006, “Deformation of 921 Earthquake by Satellite Radar Interferometry : Co-seismic and Post-seismic Estimation”, Journal of Photogrammetry and Remote Sensing Volume 11, No.3, pp. 327-336.
[7] 張中白,王志添,王皓正,陳錕山,2004,“應用雷達差分干涉法監測都會型地表變形:以中壢工業區為例”航測及遙測學刊,第九卷,第三期,第9-14頁,民國93年9月
[8] Hu, Shouchao, Jicang Wu, Baosong Ban, Lina Zhang, 2009, “PALSAR Interferometry for Urban Subsidence Monitoring: An Experiment in Shanghai Area”, APSAR 2009, pp.140 – 143.
[9] Wang, Zhiyong; Guolin Liu; Tian'en Chen; Jixian Zhang; Guoman Huang; 2010; “Detecting and assessing the land subsidence in coal mining area using PALSAR data based on D-InSAR technique”, International Conference on Computer Engineering and Technology, V3-222 - V3-226.
[10] Shi, Hongyun; Songlin Yang; Qulin Tan; 2010; “A case study on co-seismic ground deformation of the Wenchuan earthquake using L-band and C-band SAR interferometry”, International Conference on Geoinformatics, pp. 1-4.
[11] 周鋒泯,張中白,2009,“應用永久散射體差分干涉法觀測台灣北部地區之地表變形”國立中央大學地球物理研究所碩士論文
[12] Fan Jinghui; Hongli Zhao; Pengfei Tu; Yi Wang; Xiaofang Guo; Daqing Ge; Guang Liu; 2010, “CRInSAR for landslide deformation monitoring: A case in threegorge area”, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.3956 – 3959.
[13] Lee, J. S., T. L. Ainsworth, M. R. Grunes, and R. M. Goldstein, 1994, “Noise Filtering of Interferometric SAR Images”, Proceedings of the SPIE – The International Society for Optical Engineering, vol. 2315, pp. 735-742.
[14] Lee, J.S., K. W. Hoppel, S. A. Mango, and A. R. Miller, 1994, “Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery,” IEEE Trans. Geosci. Remote Sensing, vol. 32, pp. 1017–1028.
[15] Lee, J. S., K. P. Konstantinos, P. Papathanassiou, T. L. Ainsworth, M. R. Grunes, and A. Reigber, 1998, “A New Technique for Noise Filtering of SAR Interferometric Phase Images”, IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 5, pp. 1456-1465.
[16] Goldstein, R. M., H. A. Zebker, and C. L.Werner, 1998, “Satellite radar interferometry : Two-dimensional phase unwrapping”, Radio Sci., vol. 23, no. 4, pp. 713–720.
[17] Goldstein, R. M., C. L. Werner, 1998, “Radar interferogram filtering for geophysical applications”, Geophys. Res. Lett., vol. 25, no. 21, pp. 4035–4038.
[18] Chen, C. W., H. A. Zebker, 2000, “Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms”, Journal of the Optical Society of America A, vol. 17, pp. 401-414.
[19] Chen, C. W., H. A. Zebker, 2001, “Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization”, Journal of the Optical Society of America A, vol. 18, pp. 338-351.
[20] Chen, C. W., H. A. Zebker, 2002, “Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models”, IEEE Transactions on Geoscience and Remote Sensing, vol. 40, pp. 1709-1719.
[21] 王天南,葛德治,陳維東,2004,“台灣高速鐵路雲林土庫段地盤下陷之機制探討”國立雲林科技大學營建工程系碩士論文
[22] Jung, H. S.; Lu, Z.; Won, J. S.; Poland, M. P.; Miklius, A.; 2011, “Mapping Three-Dimensional Surface Deformation by Combining Multiple-Aperture Interferometry and Conventional Interferometry: Application to the June 2007 Eruption of Kilauea Volcano, Hawaii”, IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 1, pp.34-38.
[23] Jung, Hyung-Sup; Joong-Sun Won; Sang-Wan Kim; 2009; “An Improvement of the Performance of Multiple-Aperture SAR Interferometry (MAI)”, IEEE Transactions on Geoscience and Remote Sensing, vol. 47, pp. 2859-2869.
[24] Bechor, N. B. D., H. A. Zebker, 2006, “Measuring two-dimensional movements using a single InSAR pair”, Geophys. Res. Lett., 33, L16311, doi:10.1029/2006GL026883.
[25] http://www.gdem.aster.ersdac.or.jp/index.jsp
[26] http://www.csrsr.ncu.edu.tw/08CSRWeb/ChinAccessibility/A6TechSupp/ALOS/AccStd.php?FileNm=ALOSIntro
[27] http://www.eorc.jaxa.jp/index.htm
[28] http://envisat.esa.int/
[29] 王天南,2006,台灣高速鐵路雲林土庫段地盤下陷之機制探討,國立雲林科技大學營建工程系碩士論文,雲林。
[30] 財團法人工業技術研究院,2004a,台灣地區地層下陷之監測、調查及分析–水準點檢測摘要報告,經濟部水利署。
[31] http://www.subsidence.org.tw/
指導教授 陳錕山(Kun-shan Chen) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明