博碩士論文 980202008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:54.81.220.239
姓名 梁維真(Wei-Jen Liang)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 基於色彩校正的遙測影像變遷偵測
(Color Transform Correction with Change Detection on Multispectral Remote Sensing Images)
相關論文
★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)★ 高頻譜影像物質含量估計運用加權最小 平方法
★ 利用X光乳房攝影產生之紋理特徵影像在腫瘤偵測上之研究★ 高光譜影像雜訊模式估計
★ 利用高光譜影像作異常物偵測★ 無參數加權特徵萃取對遙測及醫學影像目標偵測的應用
★ 利用電腦自動化對數值高程模型作線形偵測★ 高光譜影像異常物偵測與識別之平行運算方法與其效能評估
★ 利用多光譜影像的光譜與空間資訊結合數學型態學進行海洋油汙偵測★ 低解析度車牌視訊之強化與辨識
★ 利用遙測影像自動萃取校正點★ 新的影像融合演算法應用於多光譜遙測影像
★ 利用影像處理進行遙測影像的河道偵測與醫學影像的血管偵測★ 可調式都卜勒主動雷達校正器之改良研究
★ 利用固定式攝影機即時偵測土石流★ 藉由電腦視覺自動偵測土石流
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著遙測科技的發展,衛載影像的技術日趨進步,也廣泛的應用在舉凡土地利用、變遷偵測、水資源等不同的領域。另一方面,由於台灣位於板塊交界處,地震頻傳,變遷偵測便成為地貌變化、環境保護的重要依據,我們可以透過兩張不同時間相同區域的衛星影像來做偵測及校正,並將校正後的成果用在變遷偵測上,藉此提升校正的應用範圍。事實上,每一張衛星影像在大氣、地貌、溫度等均有差異,如何能提升多張影像之間的辨識度便成為一個重要的議題。
本論文建立在色彩轉換的基礎上,不使用複雜的大氣參數,對不同時間點的影像進行相對校正。文中先對影像前處理,包含融合影像、提高解析度,將每張影像互相匹配,接著我們使用色彩轉換以及白化-反白化的方法,藉由影像本身的特徵,將選取的資料做校正;最後,得到校正的結果之後,為了讓使用者能夠得到應用在變遷偵測上的差異,用影像差分進行變遷偵測,最後把校正與偵測分類,進而比較與分析,得到最佳的判斷方法。
我們將影像資料分成山區以及平地混和,使用的是921集集地震中橫公路路段以及雲林縣草嶺地區的衛星影像,並由分析數據得知,在不同的影像資料下,我們的影像校正演算法都能降低大氣擾動對影像的影響,在結果影像都有良好的表現。
摘要(英) Because of the development of remote sensing technology, space-borne images have improved their resolution in the past decades. Remote sensing has many applications, such as land management, change detection, water resource and so on. Moreover, Taiwan is in the divergent boundaries. There are many earthquakes every year and some cause serious landslide. Change detection by remote sensing is an efficient approach to detect terrain features’ change and for environmental protection. We compare to images of the same region but collected at different times to detect the changes. However, images are diverse not only on ground condition, but also atmospheric conditions. How to increase the recognition rate between images is an important issue.
In this thesis, we reduce the atmospheric conditions based on color transform algorithm without using complex atmospheric parameters. Because of its simplicity, relative correction is commonly used recently. We first apply image fusion to enhance the resolution and match our images. Then, we adopt color transform and Whitening/Dewhitening method for correction based on the statistic of images. For applying the result in change detection, we use univariate image differencing to detect the difference between the images. Finally, quantitative analysis is conducted for performance comparison.
The image scenes used for experiments are in Central Cross-Island Highway of Taiwan during 921 chi-chi earthquake and Cao-ling area in Yunlin county. From the result, our method can reduce the atmospheric disturbances on the satellite images. It provides a procedural for correction algorithms and yields good quality and performance.
關鍵字(中) ★ 白化-反白化
★ 影像差分
★ 相對校正
★ 色彩轉換
關鍵字(英) ★ univariate image differencing
★ Whitening/Dewhitening
★ relative correction
★ color transform
論文目次 摘要.............................................i
Abstract.........................................iii
Contents.........................................v
Contents of Figures..............................vii
Contents of Tables...............................ix
Chapter 1 Introduction...........................1
1.1 Motivation and Overview......................1
1.2 Flowchart....................................3
1.3 Thesis Organization..........................4
Chapter 2 Image Pre-processing...................5
2.1 Gaussian Pyramid.............................5
2.2 HSI Fusion...................................6
2.3 Lαβ Color Space............................8
Chapter 3 Relative Correction Algorithm..........12
3.1 Color Transform..............................12
3.2 Whitening-Dewhitening........................13
3.3 Change Detection.............................15
3.3.1 Univariate Image Differencing..............15
Chapter 4 Experimental Results...................16
4.1 Data Source..................................16
4.2 Image Pre-processing.........................23
4.3 Relate Correction Algorithm..................29
4.4 Quantitative Analysis........................39
Chapter 5 Conclusions............................44
References.......................................46
參考文獻 [1] Ruderman, D.L., T.W. Cronin, and C.C. Chiao, Statistics of cone responses to natural images: implications for visual coding. JOSA A, 1998. 15(8): p. 2036-2045.
[2] Mayer, R., F. Bucholtz, and D. Scribner, Object detection by using whitening/dewhitening to transform target signatures in multitemporal hyperspectral and multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2003. 41(5): p. 1136-1142.
[3] Burt, P. and E. Adelson, The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 1983. 31(4): p. 532-540.
[4] 潘彥男, 利用電腦自動化對數值高程模作線形偵測. 國立中央大學碩士論文, 2006.
[5] Haydn, R., G. Dalke, J. Henkel, and J. Bare. Application of the IHS color transform to the processing of multisensor data and image enhancement. 1982.
[6] Reinhard, E., M. Adhikhmin, B. Gooch, and P. Shirley, Color transfer between images. IEEE Computer Graphics and Applications, 2001. 21(5): p. 34-41.
[7] Young, A.T., U.S.N. Aeronautics, and S. Administration, What Color is It?, National Aeronautics and Space Administration. 1988.
[8] 鄭柏左, 色彩理論與數位影像, 新文京開發. 2004.
[9] 黃耀賢, 有效的影像色彩轉換演算法. 國立中興大學碩士論文, 2009.
[10] Coppin, P.R. and M.E. Bauer, Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews, 1996. 13(3): p. 207-234.
[11] Mayer, R. and R. Priest, Object detection using transformed signatures in multitemporal hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2002. 40(4): p. 831-840.
[12] Murakami, T., Ohta, T., Kajisa, T., Mizoue, N., and Yoshida, S., Detection of Clear-Cut Areas Using the Image Differencing Method with LANDSAT/TM Data. Asian Journal of Geoinformatics, 2010. 10(1): p. 11-19.
[13] Saksa, T., J. Uuttera, T. Kolstrom, M. Lehikoinen, A. Pekkarinen, and V. Sarvi, Clear-cut detection in boreal forest aided by remote sensing. Scandinavian Journal of Forest Research, 2003. 18(6): p. 537-546.
指導教授 任玄(Hsuan Ren) 審核日期 2011-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明