博碩士論文 980202601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.239.167.74
姓名 孟和額爾登(Munkh-Erdene Altangerel)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 應用ASTER影像於南蒙古戈壁沙漠區之地表礦物辨識
(Mapping surface materials of the Gobi desert area using ASTER images, Southern Mongolia)
相關論文
★ 應用Landsat MSS/TM & ETM 影像偵測湄公河的變遷★ 應用雷達干涉法在彰化縣員林地區地層下陷研究
★ 合成孔徑雷達影像之地形線形特徵萃取★ 應用太空大地測量法探討台南地區之地表變形
★ 應用地形分析方法研究台灣中央山脈東翼地表抬升★ 利用衛星影像萃取近岸地形-以台灣北部為例
★ 台灣西南部前陸地區演育與古應力分析★ 桃園臺地群地表變形與地下構造之研究
★ 應用永久散射體差分干涉法觀測台灣北部地區之地表變形★ 台灣東部縱谷南端之活動構造研究
★ Seismic hazard assessment in Taiwan: Insights from historical seismicity and radar interferometry analyses★ 台北盆地及周圍山區之現今地表變形研究
★ 利用永久性散射體差分干涉法探討台南地區之地殼形變★ 臺灣南部橫貫公路向陽-初來段之構造與邊坡穩定
★ 莫拉克風災山崩區域之地質構造與大地應力分析★ 台灣中部埔里盆地的構造活動: 衛星遙測和野外觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Terra衛星所酬載的ASTER感測器涵蓋廣泛的光譜範圍,從可見光到熱紅外線共有14個波段。藉由分析不同波段的影像,可以辨別和繪製地表的岩石種類和預測礦物的風化程度與組合。本研究利用ASTER影像對南蒙古戈壁南蒙古沙漠進行多光譜分析。該地區極度乾旱、幾乎無植被的地表,十分有利應用遙測技術於地表岩性判釋。將衛星影像進行幾合與輻射修正,以及光譜分析後,本研究提出該地區地表風化礦物的分類。光譜分類根據下列步驟進行:
a)以最小噪音分離轉換(MNF)降低光譜雜訊
b)以像素純度指數(PPI)分析降低像素數目
c)使用N維視覺化工具(N-dimentional visualizer)進行端元判定
此外,本研究亦結合遙測影像和地形圖,應用地理資訊系統技術,配合地質資料來檢測所繪製的風化礦物分佈圖。結果顯示在本研究區域中,應用MNF、PPI、n-D visualizer等分析方法於風化礦物的判釋確實可行。
摘要(英) The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) cover a wide spectral region with 14 bands from visible to the thermal infrared. The different band ranges can be capable discriminating and mapping surface rocks and predict minerals on alteration assemblages of potential targets. The aim of this work is a multispectral analysis of the area of interest using ASTER sensor image on board the satellite Terra. This research work presents classification of different minerals in Gobi (Southern Mongolia) desert and almost non-vegetated arid area. The Satellite imagery has been corrected geometrically and radiometrically. The spectral classification was done according to the following steps:
a) Spectral reduction by the Minimum Noise Fraction (MNF) transformation,
b) Spatial reduction by the Pixel Purity Index (PPI) and
c) Manual identification of the endmembers using the N-dimensional visualizer.
This research work was used remotely sensed imagery and topographical map, and Remote Sensing and GIS techniques to detect mineral alteration mapping. Ground truth data have been used for validation as a reference. The application of the sequence MNF, PPI and n-D visualizer in the study area showed possibility of the identification of different mineral and different rock types.
關鍵字(中) ★ 風化礦物
★ N維視覺化工具
★ 像素純度指數
★ 最小噪音轉換
★ ASTER
關鍵字(英) ★ alieration minerals
★ N-dimensional visualization
★ Pixel purity index
★ minimum noise fraction
★ ASTER
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables viii
List of Abbreviations ix
CHAPTER I: INTRODUCTION 1
1.1 General Introduction 2
1.2 Introduction to the Study Area 2
1.2.1 Geography 2
1.2.2 Climate 2
1.2.3 Hydrology 3
1.2.4 Geology 3
1.2.5 Population 4
1.2.6 Research objective 5
CHAPTER II: TECHNIQUE, DATA ANALYSIS AND METHODOLOGY 6
2.1 Overview to Remote Sensing and Geographic Information System 6
2.1.1 Remote Sensing 6
2.1.2 Spectroscopy 9
2.1.3 Geographic Information Systems 11
2.1.4 Application of Remote Sensing and GIS in Geology 12
2.1.5 ASTER Sensor 13
2.1.6 Maps Overview 15
2.2 Research Data 16
2.2.1 ASTER data 16
2.2.2 Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) 16
2.2.3 Ground truth data 17
2.3 Methodology 19
2.3.1 Classification 19
2.3.2 Methodology of mapping surface materials 20
2.3.3 Crosstalk Correction 22
2.3.4 Geometric Correction 22
2.3.5 Minimum Noise Fraction 24
2.3.6 Pixel Purity Index 26
2.3.7 N-Dimensional Visualization 27
2.3.8 The Spectral Angle Mapper 28
2.3.9 Spectral Band Ratio 29
CHAPTER III: RESULT AND DISCUSSION 31
3.1 Mineral mapping process 31
3.1.1 Crosstalk Correction result 31
3.1.2 Geometric Correction result 31
3.1.3 Minimum Noise Fraction Images 32
3.1.4 Pixel Purity Index Image 34
3.1.5 N-Dimensional Visualization result 35
3.1.6 Color composite and Band ratio images 37
3.1.7 Mapping surface materials 38
3.1.8 Comparison with ground truth data 43
3.2 Discussion 46
CHAPTER IV: CONCLUSSION AND RECOMMENDATION 47
4.1 Conclusion 47
4.2 Recommendation 48
References 49
參考文獻 [1] Ninomiya,Y. 2002, Mapping quartz, carbonate minerals and mafia-ultramafic rocks using remotely sensed multispectral, thermal infrared ASTER data. Proceedings of SPIE, 4710, pp.191-202.
[2] Hunt G.R, Salisbury J.W, and Lenhoff C.J, 1972, Visible and near infrared spectra of minerals, Modern Geology, pp 3:121-132.
[3] Hunt G.R, 1977, Spectral signatures of particular minerals in the visible and near infrared, Geophysics, 42(3), pp.501-513.
[4] Boardman, J.W and Kruse, F.A, 1994, Automated spectral analysis: a geologic example using AVIRIS data, north Grapevine Mountains, Nevada, Proceedings of the Tenth Thematic Conference on Geologic Remote Sensing, pp.1407-1418.
[5] Fundamentals of Remote Sensing Introduction Source: www.ccrs.nrcan.gc.ca
[6] Wikipedia http://en.wikipedia.org/
[7] ERDAS Field Guide, 2008, Leica Geosystems.
[8] Kang-tsung Chang. 2006, Introduction to Geographic Information Systems, by published McGraw Hill, third edition.
[9] Gary L.Prost., 2001, Remote Sensing for Geologists; A Guide to Image Interpretation, by published Gordon and Breach Science Publishers, second edition.
[10] Hirano,A., H.Lang, R.Welch, and H.Lang, 2003, Mapping from ASTER stereo image data: DEM validation and accuracy assessment, ISPRS Journal of Photogrammetry & Remote Sensing, vol. 57, pp. 356-370.
[11] ASTER users handbook http://www.asterweb.jpl.nasa.gov
[12] ERSDAC, 2002, https://lpdaac.usgs.gov/
[13] http://geology.isu.edu/geostac/Field_Exercise/topomaps/topo_map.htm
[14] Bob Agar, 2001, ASTER Alteration Mineral Mapping; Las Pampas, Cajamarca, Peru for B&G Mining S.A.C
[15] Geometric correction http://www.sjsu.edu/
[16] Boardman J.W and Kruse F.A, 1994, Automated spectral analysis; Geologic example using AVIRIS data, north Grapevine Mountains, Nevada Thematic Conference on Geologic Remote Sensing, Environmental Research, Ann Arbor, MI, I: 407-418.
[17] Bachari.N, Khodja.S, Belbachir.A, Multispectral Analysis of Satellite Image, ISPRS Congress Istanbul 2004, Proceedings of Commission IV
[18] Boardman J.W, 1993, Automated spectral unmixing of AVIRIS data using convex geometry concepts, 4th JPL Airborne Geoscience Workshop, JPL publication 93-26, v.1 p.11-14
[19] Abrams J.M, 1983, Remote Sensing for porphyry copper deposit in southern Arizona, Economic Geology, 78, pp.591-604.
[20] Kalinowski.A, Oliver.S, 2004, ASTER mineral index processing manual, Geoscience Australia. http://www.ga.gov.au
[21] ITT ENVI tutorial.
[22] Mineral Alteration http://geology.about.com/od/glossaryofgeology/g/defalteration.htm
[23] Mineral Alteration http://www.pimausa.com/alt_syst.html
[24] Kruse, F.A., J.W. Boardman, A.B. Lefkoff, K.B. Heidebrecht, A.T. Shapiro, P.J. Barloon, and A.F.H. Goetz, 1993. The Spectral Image Processing System (SIPS): Interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment 44: 145-163.
[25] Edited by Andrew N. Rencz. 1999, Remote Sensing for Earth Sciences, published by John Wiley and Sons Inc, third edition, volume 3.
[26] James B. Campbell, 2002, Introduction to Remote Sensing, published by The Guilford Press, A Division of Guilford Publications, Inc.
指導教授 張中白(Chang, Chung-Pai) 審核日期 2011-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明