博碩士論文 982201004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:44.220.44.148
姓名 游天福(Tien-fu Yu)  查詢紙本館藏   畢業系所 數學系
論文名稱 關於三物種間之高流動性Lotka-Vollterra競爭擴散系統的波形極限行為
(Limiting Profiles of Lotka-Volterra Competition-diffusion System with Large Advection in Three Species Dynamics)
相關論文
★ 薛丁格方程式上直立波解的分類。★ Conformality of Planar Parameterization for Single Boundary Triangulated Surface Mesh
★ 混合噪聲的即時圖像去噪在螢光顯微鏡圖像和古畫中的應用★ 一些線性矩陣方程其平滑及週期的最小 l_2-解之探討
★ 關於漢米爾頓矩陣的某些平滑性分解★ 在N維實數域之雙調和微分方程
★ 一維動態系統其週期解之研究★ 一些延滯方程其週期解之探討
★ On the Blow-up solutions of Biharmonic Equation on a ball★ 雙調和微分方程其正整域解的存在性與不存在性之探討
★ 高階橢圓偏微分方程解的存在性及其行為之研究★ 有絲分裂中染色體運動之動態分析
★ 非線性橢圓方程及系統中解的唯一性和結構性之探討★ On the Positive Solution for Grad-Shafranov Equation
★ 非線性橢圓型偏微分方程系統之解結構分析★ On the study of the Golden-Thompson inequality
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文中,我們首先考慮兩個相互競爭的物種在異構環境的Lotka-Volter- ra competition-diffusion-advection model。這兩類物種除了他們的流動策略外,是完全相同的,而不同的流動策略是指:一類是隨機擴散,另一類則是“較聰明”─ 結合的隨機擴散和定向運動增加的環境梯度。在[3]裡面,Prof. Chen和Prof. Lou給了一個猜想,如果環境函數有多個局部極大值,那麼“較聰明”的物種,將會集中在所有該環境函數的局部極大值。然而,在[6]裡,Prof. Ni 和Dr. Lam發現,假如隨機擴散的物種在環境函數的局部極大值高於環境函數,會導致“較聰明”的物種被滅絕。在這篇文章中,我們考慮三類物種的Lotka-Volterra competition-diffusion-advection model,並期望會有與Prof. Ni 和Dr. Lam類似的結論可以被證明。
摘要(英) In this thesis, we first consider a Lotka-Volterra competition-diffusion-advection model for two competing species in a heterogeneous environment. The two species are identical except for their dispersal strategies: One is just random diffusion while the other is "smarter"- a combination of random diffusion and a directed movement up the environmental gradient. In [3], Chen and Lou conjectured that if the environment function $m$ has multiple local maxima, then the "smarter" species must concentrate at all local maximum of m. Nevertheless, in [6], Lam and Ni found that the "smarter" species will die out if the local maximum of m is smaller than the density of the other species. In this article, we consider a model of three species and expect that the related results will be similar to those in [6].
關鍵字(中) ★ 極限行為
★ 競爭擴散系統
關鍵字(英) ★ advection
★ diffusion
★ competition
★ Lotka-Volterra
論文目次 中文摘要................................................i
英文摘要................................................ii
Contents................................................iii
1. Introduction.........................................01
2. Preliminary results of single equation and coupled
system..................................................05
2.1 Single equation.....................................05
2.2 Coupled system......................................11
3. Proof of main result.................................13
4. Concluding remarks...................................20
5. References...........................................24
參考文獻 [1] Fethi Belgacem and Chris Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Canadian Appl. Math. Quart., 3 (1995), 379-397.
[2] Robert R. Cantrell, Chris Cosner and Yuan Lou, Advection mediation coexistence of competing species, Proc. Royal Soc. Edinburgh (A), 137 (2007), 497-518.
[3] Xinfu Chen and Yuan Lou, Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model, Indiana Univ. Math. J., 59 (2008), 627-658.
[4] Jack Dockery, Vivian Hutson, Konstantin Mischaikow and Mark Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.
[5] King-Yeung Lam, Concentration phenomena of a semilinear elliptic equation with large advection in population dynamics, J. Differential Equations, 250 (2011), 161-181.
[6] King-Yeung Lam and Wei-Ming Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Dis. Cont. Dyn. Syst., 28 (2010), no. 3, 1051-1067.
[7] Vivian Hutson, Yuan Lou, and Konstantin Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), no. 1, 135-161.
[8] Wei-Ming Ni, Diffusion and directed movement in heterogeneous environment, KAIST Mathematics colloquium, February 2011, Korea, downloaded from ”http://www.mathnet.or.kr/real/2011/02/WeiMingNi4(0224).pdf”.
指導教授 陳建隆(Jann-long Chen) 審核日期 2011-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明