博碩士論文 982201007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.226.251.81
姓名 游承書(Cheng-Shu You)  查詢紙本館藏   畢業系所 數學系
論文名稱 高階投影法求解那維爾-史托克方程組
(High-order projection methods for the incompressible Navier-Stokes equations)
相關論文
★ 遲滯型細胞神經網路似駝峰行進波之研究★ 穩態不可壓縮那維爾-史托克問題的最小平方有限元素法之片狀線性數值解
★ Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays★ 二維穩態不可壓縮磁流體問題的迭代最小平方有限元素法之數值計算
★ 兩種迭代最小平方有限元素法求解不可壓縮那維爾-史托克方程組之研究★ 非線性耦合動力網路的同步現象分析
★ 邊界層和內部層問題的穩定化有限元素法★ 數種不連續有限元素法求解對流佔優問題之數值研究
★ 某個流固耦合問題的有限元素法數值模擬★ 非靜態反應-對流-擴散方程的高階緊緻有限差分解法
★ 二維非線性淺水波方程的Lax-Wendroff差分數值解★ Numerical Computation of a Direct-Forcing Immersed Boundary Method for Simulating the Interaction of Fluid with Moving Solid Objects
★ On Two Immersed Boundary Methods for Simulating the Dynamics of Fluid-Structure Interaction Problems★ 生成對抗網路在影像填補的應用
★ 非穩態複雜流體的人造壓縮性直接施力沉浸邊界法數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要研究投影法中的高階緊緻有限差分在非交錯網格下的空間離散方法求解非靜態不可壓縮的納維爾-史托克方程組。首先我們給定時間變數的半離散的格式,再經由投影技巧將該問題分割成兩個子問題,其中我們先求解反應-擴散方程從而得到一個中間速度場,接著將它投影到零散度空間進而取得下一個時間步的速度及壓力。對於子問題的空間變數離散,我們使用四階的緊緻有限差分法在非交錯網格下求其差分近似解。我們提供兩個數值實例來驗證此方法的精確度,包含具有正確解的流場問題和凹槽驅動流場問題。經由數值實驗結果觀察,我們確認此種高階投影法能夠取得合理的精確度。
摘要(英) In this thesis, we study the high-order compact difference schemes for spatial discretization on non-staggered grids in the projection methods for solving the unsteady incompressible Navier-Stokes equations. We first give a semi-discretization in time for the transient problem and then split the semi-discrete formulation into sub-problems by using the projection techniques, where we solve a reaction-diffusion equation to yield the intermediate velocity field and then project it onto the space of divergence-free vector fields to obtain the velocity and pressure at next time level. For the treatment of the spatial discretization of the sub-problems arising in the projection methods, we employ the high-order compact difference schemes of fourth-order accuracy on non-staggered grids. Two numerical examples are provided to demonstrate the accuracy of the proposed high-order projection methods, including the exact forced flow problem and the lid driven cavity flow problem. From the numerical results, we may observe that the proposed high-order projection methods can achieve a reasonable accuracy.
關鍵字(中) ★ 高階緊緻差分法
★ 有限差分法
★ 投影法
★ 不可壓縮那維爾-史托克方程組
關鍵字(英) ★ projection method
★ high-order compact difference scheme
★ incompressible Navier-Stokes equations
★ finite difference scheme
論文目次 中文摘要 ..... i
英文摘要 ..... ii
Contents ..... iii
Abstract ..... 1
1 Introduction and problem formulation ..... 2
2 Time discretization by the projection methods ..... 4
3 Spatial discretization by the high-order difference schemes ..... 8
4 Numerical experiments ..... 12
5 Conclusions and future work ..... 17
Appendix A ..... 18
References ..... 19
參考文獻 [1] J. B. Bell, P. Colella, and H. M. Glaz, A second order projection method for the incompressible Navier-Stokes equations, Journal of Computational Physics, 85 (1989), pp. 257-283.
[2] O. Botella and R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Computers & Fluids, 27 (1998), pp. 421-433.
[3] D. L. Brown, R. Cortez, and M. L. Minion, Accurate projection methods for the incompressible Navier-Stokes Equations, Journal of Computational Physics, 168 (2001), pp. 464-499.
[4] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, 22 (1968), pp. 745-762.
[5] A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of Computation, 23 (1969), pp. 341-353.
[6] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer, New York, 1997.
[7] J. Donea and A. Huerta, Finite Element Methods for Flow Problems, Wiley, England, 2003.
[8] W. E and J.-G. Liu, Projection method I: convergence and numerical boundary layers, SIAM Journal on Numerical Analysis, 32 (1995), pp. 1017-1057.
[9] W. E and J.-G. Liu, Projection method III: spatial discretization on the staggered grid, Mathematics of Computation, 71 (2002), pp. 27-47.
[10] W. E and J.-G. Liu, Gauge method for viscous incompressible flows, Communications in Mathematical Sciences, 1 (2003), pp. 317-332.
[11] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Oxford University Press, New York, 2005.
[12] M. F. Fourni’e and A. Rigal, High order compact schemes in projection methods for incompressible viscous flows, Communications in Computational Physics, 9 (2011), pp. 994-1019.
[13] U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, Journal of Computational Physics, 48 (1982), pp. 387-411.
[14] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, Journal of Computational Physics, 30 (1979), pp. 76-95.
[15] B. E. Griffith, An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner, Journal of Computational Physics, 228 (2009), pp. 7565-7595.
[16] J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, 195 (2006), pp. 6011-6045.
[17] W. D. Henshaw, A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grid, Journal of Computational Physics, 113 (1994), pp. 13-25.
[18] P.-W. Hsieh, S.-Y. Yang, and C.-S. You, A new high-accuracy compact difference scheme for reaction-convection-diffusion problems with a small diffusivity, submitted for publication, 2011.
[19] J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, Journal of Computational Physics, 59 (1985), pp. 308-323.
[20] M. Li and T. Tang, A compact fourth-order finite difference scheme for unsteady viscous incompressible flows, Journal of Scientific Computing, 6 (2001), pp. 29-45.
[21] J.-G. Liu, J. Liu and R. L. Pego, Stable and accurate pressure approximation for unsteady incompressible viscous flow, Journal of Computational Physics, 229 (2010), pp. 3428-3453.
[22] L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations, Birkh‥auser, 1993.
[23] W. F. Spotz, High-Order Compact Finite Difference Schemes for Computational Mechanics, Ph.D. Dissertation, the University of Texas at Austin, December 1995.
[24] R. Temam, Sur l’approximation de la solution des ’equations de Navier-Stokes par la m’ethode des pas fractionnaires ii, Archive for Rational Mechanics and Analysis, 33 (1969), pp. 377-385.
[25] J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM Journal on Scientific Computing, 7 (1986), pp. 870-891.
[26] Z. Zheng and L.Petzold, Runge-Kutta-Chebyshev projection method, Journal of Computational Physics, 219 (2006), pp. 976-991.
指導教授 楊肅煜(Suh-Yuh Yang) 審核日期 2011-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明