博碩士論文 982201014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:100.24.122.228
姓名 邱垂青(Chuei-Ching Chiou)  查詢紙本館藏   畢業系所 數學系
論文名稱
(A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems
★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization
★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries★ A Markov Chain Multi-elimination Preconditioner for Elliptic PDE Problems on GPU
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於電漿在許多工業及生醫領域廣泛地被應用並且在其中扮演重要角色,因此對電漿本質及特性的了解在應用層面上顯得越來越重要。因為實驗所必須付出的高成本,以及某些物理量測上的困難,數值模擬在此時發揮其價值,用作預測及驗證。在恰當的物理環境條件下,例如:背景氣體溫度約為 300K,非過於稀薄氣體壓力( >50 mTorr),流體模型是一項合適於研究低解離電漿的有力工具。又歸功於近代電腦設備進步以及平行計算的發展,電漿數值模擬在耗費在計算上的時間得以減低。
然而,為了更貼近實際應用面及真實的問題,取得有具體參考價值及意義的模擬,多維度(2維或3維)的模擬以及複雜化學反應的考量往往是無可避免的,因此,線性系統求解的效率及程式在平行計算上的表現仍然是需要探討研究的議題。
在本篇論文當中,我們列出半離散格式的推導,以及一些應用KSP (Krylov-subspace)迭代法求解而得的數值結果,其中包括應用或未應用多重網格法當作先處理的兩類情況。我們將對於所呈現的結果做一些比較及討論,評估多重網格法應用在低溫電漿模擬之效益。最後,針對多重網格法的研究以及平行程式的開發的面向,提出可在未來延續的研究方向及目標。
摘要(英) Since plasma is widely applied and plays an important role in many industrial and biomedical fields, the fundamental understandings of plasma is becoming more and more essential for practical applications. Due to the high costs of physical experiments and high difficulties on measurements, numerical simulations is needed for predictions or validations. For studying the low-discharged plasma which is under low-temperature (~300K) and pressure is not too low (> 50 mTorr), fluid model is one suitable tool for simulations. For the advance in computer hardware and parallel computing, the computational runtime of a plasma simulation can be reduced.
However, the computational efficiency of linear system solvers and performance on parallel computing are still issues, since the multi-dimensional (2- or 3-dimensional) simulations and considerations of complex chemistry are often required for a realistic plasma simulation to cope with practical problems and applications.
In this thesis, we give the derivations of semi-implicit scheme and present some results of a simulation case while KSP (Krylov-subspace) iterative methods are applied with or without multigrid method is applied as a preconditioner. As conclusions of this thesis, we make some comparisons and comments for the efficiency with application of multigrid methods to plasma fluid modeling simulations. Finally, we state the future works for some aspects such as researches on multigrid mehtods and developments of parallel fluid modeling code.
關鍵字(中) ★ 低溫電漿
★ 多重網格法
★ 電漿模擬
★ 半隱式格式
關鍵字(英) ★ plasma simulation
★ semi-implicit scheme
★ multigrid method
★ low-temperature plasma
論文目次 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Specific Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Plasma Fluid Modeling Equations . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Semi-Implicit Treatment of Poisson Equation . . . . . . . . . . . . . . . . . 8
3.3 Scharfetter-Gummel Scheme for Mass Fluxes . . . . . . . . . . . . . . . . . 9
3.4 Implicit Treatment of the Electron Energy Source Term . . . . . . . . . . . 12
3.5 Remarks for Solution Algorithm and Discretization Equation . . . . . . . . 15
3.5.1 Components of Linear System Matrix . . . . . . . . . . . . . . . . . 15
3.5.2 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Multigrid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Two-Grid Correction Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Prolongation and Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Coarse Grid Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 V-Cycle Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1 Problem Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Numerical Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 25
6 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1 Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2 Some Spectrums of Linear System Matrices . . . . . . . . . . . . . . . . . 36
參考文獻 [1] Satish Balay, Jed Brown, , Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. Petsc users manual. Technical Report ANL-95/11 - Revision 3.2, Argonne National Laboratory, 2011.
[2] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. Petsc web page, 2011. http://www.mcs.anl.gov/petsc.
[3] Michael S. Barnes, Tina J. Colter, and Michael E. Elta. Large-signal time-domain modeling of low-pressure rf glow discharges. Journal of Applied Physics, 81:61, 1986.
[4] William L. Briggs, Van Emden Henson, and Stephen Fahrney McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), 2000.
[5] K.-W. Cheng, C.-T. Hung, M.-H. Chiang, F.-N. Hwang, and J.-S. Wu. One-dimensional simulation of nitrogen dielectric barrier discharge driven by a quasi-pulsed power source and its comparison with experiments. Computer Physics Communications, 182:164–166, 2011.
[6] G. J. M. Hagelaar and G. M. W. Kroesen. Speeding up fluid models for gas discharges by implicit treatment of the electron energy source term. Journal of Computational Physics, 159:1–12, 2000.
[7] C.-T. Hung, M.-H. Hu, J.-S. Wu, and F.-N. Hwang. A new paradigm for solving plasma fluid modeling equations. Computer Physics Communications, 177:138–139, 2007.
[8] Chieh-Tsan Hung. Development of a Parallelized Fluid Modeling Code and Its Applications in Low-temperature Plasmas. PhD thesis, Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, 2010.
[9] Chieh-Tsan Hung, Yuan-Ming Chiu, Feng-Nan Hwang, and Jong-Shinn Wu. Development of a parallel implicit solver of fluid modeling equations for gas discharges. Computer Physics Communications, 182:163–165, 2011.
[10] Michael A. Lieberman and Allan J. Lichtenberg. Principles of Plasma Discharges and Materials Processing. Wiley-Interscience, 1994.
[11] K.-M. Lin, C.-T. Hung, F.-N. Hwang, M.R. Smith, Y.-W. Yang, and J.-S. Wu. Development of a parallel semi-implicit two-dimensional plasma fluid modeling code using finite-volume method. Computer Physics Communications, 183:1225–1236, 2012.
[12] D. L. Scharfetter and H. K. Gummel. Large-signal analysis of a silicon read diode oscillator. IEEE Transactions on Electron Devices, 16:64–77, 1969.
[13] Osamu Tatebe and Yoshio Oyanagi. Efficient implementation of the multigrid precon-ditioned conjugate gradient method on distributed memory machines. In Proceedings of the 1994 conference on Supercomputing, Supercomputing ’94, pages 194–203, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.
[14] Peter L. G. Ventzek, Timothy J. Sommerer, Robert J. Hoekstra, and Mark J. Kushner.
Two-dimensional hybrid model of inductively coupled plasma sources for etching. Appl. Phys. Lett., 1993.
[15] Pieter Wesseling. An Introduction to Multigrid Methods. A Wiley-Interscience Series of Texts, Monographs, and Tracts, 1992.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明