博碩士論文 982202002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.221.41.214
姓名 賴柏延(Po-Yen Lai)  查詢紙本館藏   畢業系所 物理學系
論文名稱 雷射驅動電漿光譜和撞性電漿的動態行為之數值研究–應用於雷射生成錫電漿極紫外光光源
(Numerical study of laser-driven plasma spectroscopy and kinetic behavior of a collisional plasma: For application of a laser-produced Sn plasma extreme ultraviolet light source)
相關論文
★ 一維羅倫茲電漿粒子模擬的動力學特性★ 透過高頻電磁波加速電子來間接加速質子的數值模擬研究
★ 雷射波形對相位穩定質子加速器運作的影響★ 雷射與薄膜作用產生高能質子束之模擬與理論研究
★ 外部反射線路對於磁旋返波振盪器影響之模擬研究★ 利用強場電磁波產生高能質子束的數值模擬研究
★ 考慮受激拉曼散射下多模光纖脈衝雷射放大器之最大可擷取能量的數值模擬研究★ 空間電荷極限電流密度之理論模擬研究
★ 碰撞式粒子網格模擬法之離散粒子效應對電漿波衰減的影響★ 雙脈衝雷射產生錫電漿極紫外光光源之數值研究
★ 考慮受激非彈性散射下脈衝光纖雷射放大器之最大可擷取 能量的數值模擬研究★ 雷射激發錫電漿產生極紫外光之頻譜分析
★ 齊次平衡解析方法在求解非線性偏微分方程式的適用性分析★ 雷射電漿電子加速器之模擬研究
★ K頻段高均勻度微波材料處理系統之模擬研究與實用驗證★ 雷射電漿質子加速機制之比較研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來半導體產業為了維持摩爾定律,全力研發由13.5 奈米中心波長在2%的頻寬範圍內的帶內極紫外光,作為先進光蝕刻技術的光源。運用高強度奈秒脈衝雷射轟擊錫靶材產生錫電漿,使其激發極紫外光,是目前產生所需光源的有效方法,而上述過程可統稱為雷射引發電漿光譜學。
本論文著重在以模擬方法探討高功率脈衝雷射引起的電漿光譜學,從雷射脈衝的生成、雷射電漿交互作用、電漿內部的碰撞、解離和輻射效應分別建立可靠的數值模型,發展出一套完整的模擬架構,搭配解析理論與實驗數據進行雷射電漿生成的極紫外光源之研究探討,未來可以應用在不同雷射引起電漿光譜學的相關研究上。論文內容可主要分為三個部份。
第一部份,我們針對高功率掺鐿光纖雷射系統中的各種訊號動態行為,發展一套模擬不同條件和特性下的光纖雷射放大器之數值模型。基於此模型,我們探討了在光纖內各種訊號的動態行為,包含自發性輻射、寬頻寄生受激放大過程和非線性拉曼散射。模擬結果與實驗量測相當吻合,進而優化實驗參數使得由光纖放大器串聯的奈秒光纖主從式放大器系統輸出的雷射強度達成雷射產生錫電漿生成極紫外光源的需求。
第二部分著重在完成一套穩態輻射電漿模型,並用來研究在各種實驗條
件下極紫外光生成過程。此數值模型包含電漿流體動力學、碰撞輻射解離模型和輻射在電漿中的傳遞。我們運用此模型定量計算考慮電漿再吸收狀態下的極紫外光輻射量並探討雷射脈衝寬度和雙脈衝機制對極紫外光轉換效率的影響。
論文的最後一部份,為了正確模擬碰撞性電漿行為,我們針對了碰撞性粒子模擬法裡固有的粒子離散效應引發的數值熱化現象進行研究。當外加碰撞加入一維模擬時,導致電漿熱化時間大幅縮短並與德拜長度內模擬粒子數目的一次方成正比,此現象可以由Balescu-Lenard-Landau 理論說明。此外,我們研究了粒子分散效應對於逆軔致輻射的影響,並基於粒子模擬法建立了研究電漿極紫外光光譜學的動態模型。
摘要(英) In order to keep Moore′s Law alive, an extreme ultraviolet (EUV) light of a 13.5-nm wavelength within 2% bandwidth as an appropriate light source for lithography has attracted considerable attention. Laser produced plasma (LPP) is an effective method to generate the required EUV light, where the Sn target is heated by a nanosecond laser pulse to produce the high-temperature plasma to generate EUV radiation. These processes can be called a LPP spectroscopy. This dissertation aims to develop an integrated model to numerically investigate several physical properties within a LPP spectroscopy respectively. Studied topics include generation of an intense laser pulse, laser-plasma interaction, radiation transfer in a hot-dense plasma, and kinetic behavior of the particle. The work consists of three parts.
The first part includes a numerical study and a systematical analysis of the spectral dynamics in a high-power fiber laser amplifier, e.g., amplified spontaneous emission, parasitic amplification, stimulated Raman scattering, etc. The simulation results agree well with experiments and optimize the experimental conditions to achieve the irradiance requirements in order to generate the laser-produced plasma.
In the second part, we have constructed an integrated model to investigate the laser-produced plasma light source. The model includes plasma hydrodynamic processes, radiative-collisional ionization and radiation transfer in a plasma. Using the model, the quantitative estimation of in-band EUV emission from optically thick plasma can be achieved. According to the simulation results, we present the effect of pulse duration on the conversion efficiency of the EUV light and the enhancement of the EUV emission energy by using a dual-pulse scheme.
In the last part, we have investigated numerical thermalization due to the discrete-particle effect in collisional simulations in order to accurately simulate particle collisions in a plasma. The scaling law of the thermal relaxation time with the particle number in a Debye length in a one-dimensional collisional PIC simulation has been purposed. The discrete-particle noise thus can be described using Balescu-Lenard-Landau kinetic theory. As a result, using a collisional particle-in-cell (PIC) method, we investigate the discrete-particle effect on inverse-bremsstrahlung absorption rate and present the preliminary simulation results of the LPP EUV light source instead of the hydrodynamic model in order to study the particle kinetic behavior.
關鍵字(中) ★ 極紫外光
★ 電漿光譜學
★ 高功率光纖雷射與放大器
★ 輻射傳遞
★ 碰撞性粒子模擬
★ 分離粒子效應
★ 電漿數值熱化
關鍵字(英) ★ Extreme ultraviolet light
★ plasma spectroscopy
★ high-power fiber laser amplifier
★ radiation transfer
★ collisional particle-in-cell simulation
★ discrete-particle effect
★ numerical thermalization
論文目次 Contents i
List of Tables v
List of Figures vi
1 Introduction 1
1.1 Motivation and overview of this dissertation . . . . . . . . . . . . . . . . 1
1.2 Laser-produced plasma-based extreme ultraviolet light sources . . . . . . 5
1.2.1 Need and development of extreme ultraviolet light sources . . . . 5
1.2.2 Requirements on laser parameters and plasma characteristics . . . 7
1.3 The laser driver for laser-produced plasma extreme ultraviolet light sources: high power nanosecond pulsed fiber lasers . . . . . . . . . . . . . . . . . 11
1.4 Kinetic properties of hot-dense plasmas . . . . . . . . . . . . . . . . . . . 15
1.4.1 Simulations of collisional plasmas . . . . . . . . . . . . . . . . . . 15
1.4.2 Discrete-particle effect in collisional plasmas . . . . . . . . . . . . 18
2 Numerical study of a high-power fiber laser amplifier 21
2.1 Fundamentals of a rare-earth optics fiber laser amplifier . . . . . . . . . . 21
2.1.1 The geometry and parameters of a fiber laser amplifier . . . . . . 21
2.1.2 Laser mechanisms and an energy-level system . . . . . . . . . . . 23
2.1.3 Spontaneous emission, stimulated emission and absorption, and corresponding cross sections in a two-level system . . . . . . . . . 25
2.1.4 One-dimensional radiation transfer equation and rate equation for an ytterbium-doped fiber laser amplifier . . . . . . . . . . . . . . 27
2.1.5 Stimulated Raman scattering in a high-power fiber laser amplifier 31
2.2 Modeling a high-power fiber laser . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Numerical studies and applications of a high-power fiber laser . . . . . . 38
2.3.1 Influence of amplified spontaneous emission on a fiber laser amplifier 38
2.3.2 Parasitic stimulated amplification in a diode-seeded fiber laser amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.3 Stimulated Raman scattering in a high-power pulsed fiber laser amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.4 Advantages and limitations of a double-pass pulsed fiber laser amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4 Prospect of designing a master oscillator power amplifier system for laser-produced plasma extreme ultraviolet light sources . . . . . . . . . . . . . 57
3 Numerical study of extreme ultraviolet light sources from laser-produced Sn plasmas 63
3.1 The physics of collisional-radiative plasmas . . . . . . . . . . . . . . . . . 64
3.1.1 Laser-produced plasmas . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.2 Kinetic theory of plasmas . . . . . . . . . . . . . . . . . . . . . . 66
3.1.3 Hydrodynamic model of plasmas . . . . . . . . . . . . . . . . . . 70
3.1.4 Atomic processes in plasmas . . . . . . . . . . . . . . . . . . . . . 75
3.1.5 Ionization in plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.6 Radiation in plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.1.7 Spectral line broadening . . . . . . . . . . . . . . . . . . . . . . . 83
3.1.8 Level populations of excited states within ions . . . . . . . . . . . 86
3.1.9 Radiative opacity of hot dense plasmas . . . . . . . . . . . . . . . 87
3.2 Hydrodynamic simulation of collisional-radiative plasmas . . . . . . . . . 89
3.2.1 Laser/target parameters and properties . . . . . . . . . . . . . . . 90
3.2.2 The steady-state plasma model: MED 103 . . . . . . . . . . . . . 92
3.2.3 The steady-state ionization model: collisional-radiative equilibrium 95
3.2.4 Radiative emissivity and opacity of Sn plasmas in the extreme ultraviolet region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.2.5 Radiation transfer in Sn plasmas for the extreme ultraviolet light 110
3.3 Hydrodynamic simulation of laser-produced plasmas for extreme ultraviolet light sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.3.1 Characteristics of the extreme ultraviolet light emission from laser-produced Sn plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.3.2 Comparing the numerical results using experimental benchmarks . 117
3.3.3 Parametric study of laser-produced Sn plasmas for extreme ultraviolet light sources . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4 Kinetic properties of collisional plasmas 127
4.1 Modeling a collisional plasma using the particle-in-cell approach . . . . . 128
4.1.1 Particle-in-cell simulations . . . . . . . . . . . . . . . . . . . . . . 128
4.1.2 Collision models for the particle-in-cell simulation . . . . . . . . . 132
4.2 Numerical thermalization due to discrete-particle effect in a particle-in-cell simulation with Krook type collisions . . . . . . . . . . . . . . . . . . . . 139
4.2.1 Physical system and Krook type collision model . . . . . . . . . . 140
4.2.2 Analysis of the thermalization time . . . . . . . . . . . . . . . . . 142
4.2.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 144
4.3 Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions: Pitch-angle scatterings and large-angle collisions . . . . . . . . 148
4.3.1 Physical system and collision models . . . . . . . . . . . . . . . . 149
4.3.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 152
4.4 Preliminary investigation of collisional-radiative plasmas using particle-in-cell simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.4.1 Discrete-particle effect on inverse-bremsstrahlung heating in collisional particle-in-cell simulations . . . . . . . . . . . . . . . . . . 162
4.4.2 Numerical modeling extreme-ultraviolet light emission from laser-produced plasmas using particle-in-cell simulations . . . . . . . . 165
5 Conclusions and prospect 174
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Bibliography 179
6 Appendice 203
6.1 Appendix A: Coulomb collision . . . . . . . . . . . . . . . . . . . . . . . 203
6.1.1 Rutherford scattering . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.1.2 Fokker-Planck equation . . . . . . . . . . . . . . . . . . . . . . . . 209
6.1.3 Lorentz plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.2 Appendix B: Kinetic theory for the discrete-particle effect in collisional particle-in-cell simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.2.1 Klimontovich kinetic equation and characteristic time-space scales 215
6.2.2 Derivation of Balescu-Lenard collision operator in a one-dimensional uniform plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.2.3 Balescu-Lenard-Landau kinetic equation based on the Krook type collision operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.3 Appendix C: Determine the thermalization time of a plasma using the Chi-square test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.4 Appendix D: Symbols and abbreviations/acronyms . . . . . . . . . . . . 231
6.4.1 List of symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.4.2 List of abbreviation/acronym . . . . . . . . . . . . . . . . . . . . 238
參考文獻 [1] L. C. Chun-Lin, High Intensity Mirror-Free Nanosecond Ytterbium Fiber Laser System in Master Oscillator Power Amplification. PhD thesis, NATIONAL TAIWAN UNIVERSITY (TAIWAN), 2013.
[2] Y. Sintov, O. Katz,Y. Glick,S. Acco, Y. Nafcha, A. Englander,and R. Lavi,“Extractable energy from ytterbium-doped high-energy pulsed fiber amplifiers and lasers,” JOSA B, vol. 23, no. 2, pp. 218—230, 2006.
[3] A. Carter, “in private communication,” Nufern, Inc. (http://www.nufern.com).
[4] J. Koponen, “in private communication,” Liekki, Crop. (http://www.nlight.net).
[5] G. P. Agrawal, Nonlinear fiber optics. Academic press, 2007.
[6] C. Chang, P. Lai, Y. Li, Y. Lai, C. Huang, S. Chen, Y. W. Lee, and S. Huang, “Parasitic stimulated amplification in high-peak-power and diode-seeded nanosecond fiber amplifiers,” Photonics Journal IEEE, vol.6, no. 3, pp.1—8, 2014.
[7] D. Colombant and G. Tonon, “X-ray emission in laser-produced plasmas,” Journal of Applied Physics, vol. 44, no. 8, pp. 3524—3537, 1973.
[8] D. Bates, A. Kingston, and R. P. McWhirter, “Recombination between electrons and atomic ions. i. optically thin plasmas,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 267, pp. 297—312, The Royal Society, 1962.
[9] R. McWhirter, “Plasma diagnostic techniques, edited by rh huddlestone and sl leonard (academic, new york, 1965),” Chap, vol. 5, p. 208, 1965.
[10] P. Hayden, An Investigation of Tin Based Laser Produced Plasmas as a Source of Radiation at 13.5 Nm. PhD thesis, University College Dublin, 2004.
[11] J. Zeng, C. Gao, and J. Yuan, “Detailed investigations on radiative opacity and emissivity of tin plasmas in the extreme-ultraviolet region,” Physical Review E, vol. 82, no. 2, p. 026409, 2010.
[12] S. Fujioka, H. Nishimura, K. Nishihara, A. Sasaki, A. Sunahara, T. Okuno, N. Ueda, T. Ando, Y. Tao, Y. Shimada, et al., “Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas,” Physical review letters, vol. 95, no. 23, p. 235004, 2005.
[13] T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, et al., “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas,” Applied physics letters, vol. 89, no. 15, p. 1501, 2006.
[14] Y. Shimada, H. Nishimura, M. Nakai, K. Hashimoto, M. Yamaura, Y. Tao, K. Shigemori, T. Okuno, K. Nishihara, T. Kawamura, et al., “Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams,” Applied Physics Letters, vol. 86, no. 5, p. 051501, 2005.
[15] A. Endo, H. Hoshino, T. Suganuma, M. Moriya, T. Ariga, Y. Ueno, M. Nakano, T. Asayama, T. Abe, H. Komori, et al., “Laser produced euv light source de-velopment for hvm,” in Advanced Lithography, pp. 65170O—65170O, International Society for Optics and Photonics, 2007.
[16] P.-Y. Lai, L. Chen, Y. Lin-Liu, and S.-H. Chen, “Study of discrete-particle effects in a one-dimensional plasma simulation with the krook type collision model,” Physics of Plasmas (1994-present), vol.22, no.9, p.092127, 2015.
[17] P. Lai, T. Lin, Y. Lin-Liu, and S. Chen, “Numerical thermalization in particle-in-cell simulations with monte-carlo collisions,” Physics of Plasmas (1994-present), vol. 21, no. 12, p. 122111, 2014.
[18] P.-Y. Lai and S.-H. Chen, “Modeling extreme-ultraviolet emission from laser-produced plasma using particle-in-cell method,” in SPIE OPTO, pp. 93570E— 93570E, International Society for Optics and Photonics, 2015.
[19] H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics: Pearson New International Edition. Pearson Higher Ed, 2014.
[20] C. Wagner and N. Harned, “Euv lithography: Lithography gets extreme,” Nature Photonics, vol. 4, no. 1, pp. 24—26, 2010.
[21] V. Bakshi, EUV sources for lithography, vol. 149. SPIE press, 2006.
[22] A. Giovannini and R. S. Abhari, “Three-dimensional extreme ultraviolet emission from a droplet-based laser-produced plasma,” Journal of Applied Physics, vol. 114, no. 3, p. 033303, 2013.
[23] J. White, P. Dunne, P. Hayden, F. O’Reilly, and G. O’Sullivan, “Optimizing 13.5 nm laser-produced tin plasma emission as a function of laser wavelength,” Applied physics letters, vol. 90, no.18, 2007.
[24] D. Campos, S. Harilal, and A. Hassanein, “Laser wavelength effects on ionic and atomic emission from tin plasmas,” Applied Physics Letters, vol.96, no.15, p. 151501, 2010.
[25] S. Harilal, R. Coons, P. Hough, and A. Hassanein, “Influence of spot size on extreme ultraviolet efficiency of laser-produced sn plasmas,” Appl. Phys. Lett, vol. 95, no. 22, p. 221501, 2009.
[26] S. Harilal, “Influence of spot size on propagation dynamics of laser-produced tin plasma,” Journal of Applied Physics, vol. 102, no. 12, p. 123306, 2007.
[27] A. Roy, G. Arai, H. Hara, T. Higashiguchi, H. Ohashi, A. Sunahara, B. Li, P. Dunne, G. O’Sullivan, T. Miura, et al., “Evolution of laser-produced sn extreme ultraviolet source diameter for high-brightness source,” Applied Physics Letters, vol. 105, no. 7, p. 074103, 2014.
[28] K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, H. Tanuma, S. Fujioka, Y. Shi-mada, K. Fujima, H. Furukawa, T. Kato et al., “Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithographya),” Physics of Plasmas (1994-present), vol. 15, no. 5 ,p. 056708, 2008.
[29] T. Sizyuk and A. Hassanein, “Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography,” Physics of Plasmas (1994-present), vol. 19, no. 8, p. 083102, 2012.
[30] T. Sizyuk and A. Hassanein, “Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application,” Journal of Applied Physics, vol. 112, no. 3, p. 033102, 2012.
[31] M. Schnurer, S. Ter-Avetisyan, H. Stiel, U. Vogt, W. Radlo., M. Kalashnikov, W. Sandner, and P. Nickles, “Influence of laser pulse width on absolute euv-yield from xe-clusters,” The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, vol. 14, no. 3, pp. 331—335, 2001.
[32] A. Roy, S. Harilal, M. Polek, S. Hassan, A. Endo, and A. Hassanein, “Influence of laser pulse duration on extreme ultraviolet and ion emission features from tin plasmas,” Physics of Plasmas (1994-present), vol. 21, no. 3, p. 033109, 2014.
[33] Y. Ueno, G. Soumagne, A. Sumitani, A. Endo, T. Higashiguchi, and N. Yugami, “Reduction of debris of a co {sub 2} laser-produced sn plasma extreme ultraviolet source using a magnetic field,” Applied Physics Letters, vol. 92, no. 21, 2008.
[34] S. Bollanti, F. Bon.gli, E. Burattini, P. Di Lazzaro, F. Flora, A. Grilli, T. Letardi, N. Lisi, A. Marinai, L. Mezi, et al., “High-efficiency clean euv plasma source at 10—30nm, driven by a long-pulse-width excimer laser,” Applied Physics B, vol.76, no. 3, pp. 277—284, 2003.
[35] Y. Tao, M. Tillack, S. Harilal, K. Sequoia, and F. Najmabadi, “Investigation of the interaction of a laser pulse with a preformed gaussian sn plume for an extreme ultraviolet lithography source,” Journal of Applied Physics, vol. 101, no. 2, p. 023305, 2007.
[36] S. Harilal, B. O’Shay, M. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” Journal of Physics D: Applied Physics, vol. 39, no. 3, p. 484, 2006.
[37] T. Okuno, S. Fujioka, H. Nishimura, Y. Tao, K. Nagai, Q. Gu, N. Ueda, T. Ando, K. Nishihara, T. Norimatsu, et al., “Low-density tin targets for efficient extreme ultraviolet light emission from laser-produced plasmas,” Applied physics letters, vol. 88, no. 16, p. 161501, 2006.
[38] R. Coons, S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced sn and li plasmas,” Journal of Applied Physics, vol. 108, no. 6, p. 063306, 2010.
[39] T. Wu, X. Wang, H. Lu, and P. Lu, “Debris mitigation power of various bu.er gases for co2 laser produced tin plasmas,” Journal of Physics D: Applied Physics, vol. 45, no. 47, p. 475203, 2012.
[40] V. Sizyuk, A. Hassanein, V. Morozov, T. Sizyuk, et al., “Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in euv applications,” tech. rep., Argonne National Laboratory (ANL), 2007.
[41] G. Toth and D. Odstrcil, “Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems,” Journal of Computational Physics, vol. 128, no. 1, pp. 82—100, 1996.
[42] R. J. LeVeque, Finite volume methods for hyperbolic problems, vol.31. Cambridge university press, 2002.
[43] V. Morozov, V. Tolkach, and A. Hassanein, “Calculation of tin atomic data and plasma properties,” tech. rep., ANL, 2005.
[44] V. Sizyuk, A. Hassanein, and T. Sizyuk, “Three-dimensional simulation of laser-produced plasma for extreme ultraviolet lithography applications,” Journal of applied physics, vol. 100, no. 10, p. 103106, 2006.
[45] S. Harilal, T. Sizyuk, V. Sizyuk, and A. Hassanein, “Efficient laser-produced plasma extreme ultraviolet sources using grooved sn targets,” Applied Physics Letters, vol. 96, no. 11, p. 111503, 2010.
[46] A. Hassanein and T. Sizyuk, “Laser produced plasma sources for nanolithography gphyaxrecent integrated simulation and benchmarking,” Physics of Plasmas (1994-present), vol. 20, no. 5, p. 053105, 2013.
[47] A. Cummings, G. O’Sullivan, P. Dunne, E. Sokell, N. Murphy, and J. White, “Con-version efficiency of a laser-produced sn plasma at 13.5 nm, simulated with a one-dimensional hydrodynamic model and treated as a multi-component blackbody,” Journal of Physics D: Applied Physics, vol. 38, no. 4,p. 604, 2005.
[48] J. Christiansen, D. Ashby, and K. Roberts, “Medusa a one-dimensional laser fusion code,” Computer Physics Communications, vol. 7, no. 5, pp. 271—287, 1974.
[49] R. D. Cowan, The theory of atomic structure and spectra, vol. 3. Univ of California Press, 1981.
[50] J. White, P. Dunne, P. Hayden, and G. OaeSullivan, “Simplified one-dimensional calculation of 13.5 nm emission in a tin plasma including radiation transport,” Journal of Applied Physics, vol. 106, no. 11, p. 113303, 2009.
[51] A. Cummings, G. O’sullivan, P. Dunne, E. Sokell, N. Murphy, J. White, P. Hayden, P. Sheridan, M. Lysaght, and F. O’Reilly, “A spatio-temporal study of variable composition laser-produced sn plasmas,” Journal of Physics D: Applied Physics, vol. 39, no. 1, p. 73, 2006.
[52] J. White, G. O’Sullivan, S. Zakharov, P. Choi, V. Zakharov, H. Nishimura, S. Fujioka, and K. Nishihara, “Tin laser-produced plasma source modeling at 13.5 nm for extreme ultraviolet lithography,” Applied Physics Letters, vol. 92, no. 15, 2008.
[53] S. Yuspeh, Y. Tao, R. Burdt, M. Tillack, Y. Ueno, and F. Najmabadi, “Dynamics of laser-produced sn microplasma for a high-brightness extreme ultraviolet light source,” Applied Physics Letters, vol. 98, no. 20, p. 201501, 2011.
[54] J. White, Opening the Extreme Ultraviolet Lithography Source Bottleneck: Developing a 13.5-nm Laser-produced Plasma Source for the Semiconductor Industry. PhD thesis, University College Dublin, 2006.
[55] T. Maiman, “Optical and microwave-optical experiments in ruby,” Physical review letters, vol. 4, no. 11, p. 564, 1960.
[56] E. Snitzer, “Optical maser action of nd+ 3 in a barium crown glass,” Physical Review Letters, vol. 7, no. 12, p. 444, 1961.
[57] H. Etzel, H. Gandy, and R. Ginther, “Stimulated emission of infrared radiation from ytterbium activated silicate glass,” Appl. Optics, vol. 1, 1962.
[58] J. Stone and C. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Applied Physics Letters, vol. 23, no.7, pp. 388—389, 1973.
[59] R. J. Mears, L. Reekie, I. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electronics Letters, vol. 23, no. 19, pp. 1026—1028, 1987.
[60] D. Richardson, J. Nilsson, and W. Clarkson, “High power fiber lasers: current status and future perspectives [invited],” JOSA B, vol. 27, no. 11, pp. B63—B92, 2010.
[61] C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nature photonics, vol. 7, no. 11, pp. 861—867, 2013.
[62] S. A. George, K.-C. Hou, K. Takenoshita, A. Galvanauskas, and M. C. Richardson, “13.5 nm euv generation from tin-doped droplets using a fiber laser,” Optics express, vol. 15, no. 25, pp. 16348—16356, 2007.
[63] C.-L. Chang, Y.-Y. Li, P.-Y. Lai, Y.-P. Lai, C.-W. Huang, S.-H. Chen, and S.-L. Huang, “High-intensity nanosecond all-fiber-coiled laser and extreme ultraviolet generation,” in SPIE LASE, pp. 93440C—93440C, International Society for Optics and Photonics, 2015.
[64] E. M. Dianov, M. E. Likhachev, and S. Fevrier, “Solid-core photonic bandgap fibers for high-power fiber lasers,” IEEE Journal of selected topics in quantum electronics, vol. 15, no. 1, p. 20, 2009.
[65] A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. Lin, and D. J. Richardson, “High-power pulsed fiber mopa system incorporating electro-optic modulator based adaptive pulse shaping,” Optics express, vol. 17, no. 23, pp. 20927—20937, 2009.
[66] K. Vu, A. Malinowski, D. Richardson, F. Ghiringhelli, L. Hickey, and M. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber mopa system,” Optics Express, vol. 14, no. 23, pp. 10996—11001, 2006.
[67] H. Li and K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Japanese journal of applied physics, vol. 38, no. 11R, p. 6309, 1999.
[68] Z. Zhang, X. Zhou, Z. Sui, J. Wang, H. Li, Y. Liu, and Y. Liu, “Numerical analysis of stimulated inelastic scatterings in ytterbium-doped double-clad fiber amplifier with multi-ns-duration and multi-hundred-kw peak-power output,” Optics Com-munications, vol. 282, no. 6, pp. 1186—1190, 2009.
[69] L. Zenteno, J. Wang, D. Walton, B. Ruffin, M. Li, S. Gray, A. Crowley, and X. Chen, “Suppression of raman gain in single-transverse-mode dual-hole-assisted fiber,” Optics express, vol. 13, no. 22, pp. 8921—8926, 2005.
[70] J. Fini, M. Mermelstein, M. Yan, R. Bise, A. Yablon, P. Wisk, and M. Andrejco, “Distributed suppression of stimulated raman scattering in an yb-doped filter-fiber amplifier,” Optics letters, vol. 31, no. 17, pp. 2550—2552, 2006.
[71] A. Shirakawa, H. Maruyama, K. Ueda, C. Olausson, J. Lyngso, and J. Broeng, “High-power yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Optics express, vol. 17, no. 2, pp. 447—454, 2009.
[72] F. Jansen, D. Nodop, C. Jauregui, J. Limpert, and A. Tunnermann, “Modeling the inhibition of stimulated raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems,” Optics express, vol. 17, no. 18, pp. 16255—16265, 2009.
[73] M. Yamada, M. Shimizu, Y. Ohishi, J. Temmyo, T. Kanamori, and S. Sudo, “Highly efficient configuration of a pr/sup 3+/-doped fluoride fiber amplifier module with an optical circulator,” Photonics Technology Letters, IEEE, vol. 5, no. 9, pp. 1011— 1013, 1993.
[74] A. Galvanauskas, G. Cho, A. Hariharan, M. Fermann, and D. Harter, “Generation of high-energy femtosecond pulses in multimode-core yb-fiber chirped-pulse amplification systems,” Optics letters, vol. 26, no. 12, pp. 935—937, 2001.
[75] C.-L. Chang, P.-Y. Lai, Y.-Y. Li, S.-H. Chen, and S.-L. Huang, “A high peak power nanosecond all-fiber mopa system at high repetition rate,” in Proc.ofSPIE, vol. 8601, p. 86011X, 2013.
[76] Y. Wang and H. Po, “Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification,” Journal of Lightwave Technology, vol. 21, no.10, pp. 2262—2270, 2003.
[77] P.-Y. Lai, C.-L. Changb, S.-L. Huangb, and S.-H. Chen, “Effective suppression of stimulated raman scattering in high power fiber amplifiers using double-pass scheme,” in Proc. of SPIE, vol. 8961, pp. 89612T—1, 2014.
[78] C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation CRC Press, 2004.
[79] R. W. Hockney and J. W. Eastwood, Computer simulation using particles CRC Press, 1988.
[80] C. K. Birdsall, “Particle-in-cell charged-particle simulations, plus monte carlo collisions with neutral atoms, pic-mcc,” IEEE Transactions on Plasma Science,” vol. 19, no. 2, pp. 65—85, 1991.
[81] M. Surendra and D. Graves, “Electron acoustic waves in capacitively coupled, low-pressure rf glow discharges,” Physical review letters, vol. 66, no. 11, p. 1469, 1991.
[82] H. Kim and J. Lee, “Mode transition induced by low-frequency current in dual-frequency capacitive discharges,” Physical review letters, vol. 93, no. 8, p. 085003, 2004.
[83] M. M. Turner, A. Derzsi, Z. Donko, D. Eremin, S. Kelly, T. Lafleur, and T. Mussen-brock, “Simulation benchmarks for low-pressure plasmas: capacitive discharges,” Physics of Plasmas (1994-present), vol. 20, no.1, p. 013507, 2013.
[84] A. J. Kemp, R. E. Pfund, and J. Meyer-ter Vehn, “Modeling ultrafast laser-driven ionization dynamics with monte carlo collisional particle-in-cell simulations,” Physics of Plasmas (1994-present), vol. 11, no. 12, pp. 5648—5657, 2004.
[85] F. Perez, L. Gremillet, A. Decoster, M. Drouin, and E. Lefebvre, “Improved modeling of relativistic collisions and collisional ionization in particle-in-cell codes,” Physics of Plasmas (1994-present), vol. 19, no. 8, p. 083104, 2012.
[86] R. Mishra, P. Leblanc, Y. Sentoku, M. Wei, and F. Beg, “Collisional particle-in-cell modeling for energy transport accompanied by atomic processes in dense plasmas,” Physics of Plasmas (1994-present), vol. 20, no. 7, p. 072704, 2013.
[87] M. Oppenheim, Y. Dimant, and L. Dyrud, “Large-scale simulations of 2-d fully kinetic farley-buneman turbulence,” in Annales geophysicae: atmospheres, hydrospheres and space sciences, vol. 26, p. 543, 2008.
[88] A. Kemp, B. Cohen, and L. Divol, “Integrated kinetic simulation of laser-plasma interactions, fast-electron generation, and transport in fast ignitiona),” Physics of Plasmas (1994-present), vol. 17, no.5, p. 056702, 2010.
[89] T. Ma, H. Sawada, P. Patel, C. Chen, L. Divol, D. Higginson, A. Kemp, M. Key, D. Larson, S. Le Pape, et al., “Hot electron temperature and coupling efficiency scaling with prepulse for cone-guided fast ignition,” Physical review letters, vol. 108, no. 11, p. 115004, 2012.
[90] J. P. Verboncoeur, “Particle simulation of plasmas: review and advances,” Plasma Physics and Controlled Fusion, vol. 47, no. 5A, p. A231, 2005.
[91] T. Takizuka and H. Abe, “A binary collision model for plasma simulation with a particle code,” Journal of Computational Physics, vol. 25, no. 3, pp. 205—219, 1977.
[92] C. Jacoboni and L. Reggiani, “The monte carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Reviews of Modern Physics, vol. 55, no. 3, p. 645, 1983.
[93] W. M. Manheimer, M. Lampe, and G. Joyce, “Langevin representation of coulomb collisions in pic simulations,” Journal of Computational Physics, vol. 138, no. 2, pp. 563—584, 1997.
[94] K. Nanbu and S. Yonemura, “Weighted particles in coulomb collision simulations based on the theory of a cumulative scattering angle,” Journal of Computational Physics, vol. 145, no. 2, pp. 639—654, 1998.
[95] F. F. Chen and S. E. Von Goeler, “Introduction to plasma physics and controlled fusion volume 1: Plasma physics,” Physics Today, vol. 38, no. 5, pp. 87—88, 2008.
[96] J. Dawson, “One-dimensional plasma model,” Physics of Fluids (1958-1988), vol. 5, no. 4, pp. 445—459, 1962.
[97] J. M. Dawson, “Thermal relaxation in a one-species, one-dimensional plasma,” Physics of Fluids (1958-1988), vol. 7, no. 3, pp. 419—425, 1964.
[98] A. Lenard and I. B. Bernstein, “Plasma oscillations with diffusion in velocity space,” Physical Review, vol. 112, no. 5, p. 1456, 1958.
[99] R. Balescu, “Irreversible processes in ionized gases,” Physics of Fluids (1958-1988), vol. 3, no. 1, pp. 52—63, 1960.
[100] D. Montgomery and C. Nielson, “Thermal relaxation in one-and two-dimensional plasma models,” Physics of Fluids (1958-1988), vol. 13, no. 5, pp. 1405—1407, 1970.
[101] M. M. Turner, “Kinetic properties of particle-in-cell simulations compromised by monte carlo collisions,” Physics of Plasmas (1994-present), vol. 13, no. 3, p. 033506, 2006.
[102] V. Godyak and R. Piejak, “Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 mhz,” Physical review letters, vol. 65, no. 8, p. 996, 1990.
[103] N. Y. Babaeva, J. Lee, and J. Shon, “Capacitively coupled plasma source operating in xe/ar mixtures,” Journal of Physics D: Applied Physics, vol. 38, no. 2, p. 287, 2005.
[104] A. Einstein, “Zur quantentheorie der strahlung,” Physikalische Zeitschrift, vol. 18, pp. 121—128, 1917.
[105] R. C. Hilborn, “Einstein coefficients, cross sections, f values, dipole moments, and all that,” arXiv preprint physics/0202029, 2002.
[106] G. GEDDES, “Amplified spontaneous emissions in neodymium-doped fiber lasers,” 2011.
[107] Y. Wang, “Dynamics of stimulated raman scattering in double-clad fiber pulse amplifiers,” Quantum Electronics, IEEE Journal of, vol. 41, no. 6, pp. 779—788, 2005.
[108] C. Chang, Y. Lin, P. Lai, Y. Li, S. Chen, and S. Huang, “High power broad-band continuum source based on an all-pm-fiber master oscillator nonlinear power amplifier,” Laser Physics, vol. 24, no. 4, p. 045101, 2014.
[109] L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Elec-trodynamics of continuous media, vol. 8, elsevier, 1984.
[110] R. G. Smith, “Optical power handling capacity of low loss optical fibers as de-termined by stimulated raman and brillouin scattering,” Applied Optics, vol. 11, no. 11, pp. 2489—2494, 1972.
[111] C. Jauregui, J. Limpert, and A. Tunnermann, “Derivation of raman treshold for-mulas for cw double-clad fiber amplifiers,” Optics express, vol. 17, no. 10, pp. 8476— 8490, 2009.
[112] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” Journal of Lightwave Technology, vol. 9, no. 2, pp. 271—283, 1991.
[113] E. Desurvire and J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-mode fibers,” Journal of Lightwave Technology, vol. 7, no. 5, pp. 835— 845, 1989.
[114] A. Bjarklev, Optical fiber amplifiers: design and system applications. Artech House, 1993.
[115] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing. New York, NY, USA: Cambridge University Press, 1992.
[116] S. Magne, M. Druetta, J.-P. Goure, J. C. Thevenin, P. Ferdinand, and G. Mon-nom, “An ytterbium-doped monomode fiber laser: ampli.ed spontaneous emission, modeling of the gain and tunability in an external cavity,” Journal of luminescence, vol. 60, pp. 647—650, 1994.
[117] A.Hardy, R.Oron, et al., “Ampli.ed spontaneous emission and rayleigh backscat-tering in strongly pumped fiber amplifiers,” Lightwave Technology, Journal of, vol. 16, no. 10, pp. 1865—1873, 1998.
[118] J. Zhou, M. Gong, P. Yan, H. Zhang, and D. Wang, “Spike suppression in fiber amplifiers through nonlinear polarization rotation,” Optics letters, vol. 35, no. 9, pp. 1407—1409, 2010.
[119] Y. Zhang, B.-Q. Yao, Y.-L. Ju, and Y.-Z. Wang, “Gain-switched tm3+-doped double-clad silica fiber laser,” Optics express, vol. 13, no. 4, pp. 1085—1089, 2005.
[120] Y. Wang, “Optimization of pulse amplification in ytterbium-doped double-clad fiber amplifiers,” Journal of lightwave technology, vol. 23, no. 6, p. 2139, 2005.
[121] W. Koechner, “Properties of solid-state laser materials,” in Solid-State Laser Engineering, pp. 28—87, Springer, 1999.
[122] E. S. Lee and J. W. Hahn, “Four-pass amplifier for the pulsed amplification of a narrow-bandwidth continuous-wave dye laser,” Optics letters, vol. 21, no. 22, pp. 1836—1838, 1996.
[123] N. Deguil-Robin, J. Limpert, S. Petit, I. Manek-Honniger, and F. Salin, “Double-pass versus single-pass fiber amplification: a numerical and experimental comparison,” in Advanced Solid-State Photonics, p. WB26, Optical Society of America, 2005.
[124] R. Song, J. Hou, Y.-B. Wang, T. Liu, and Q.-S. Lu, “Analysis of the scalability of single-mode near-infrared supercontinuum to high average power,” Journal of Optics, vol. 15, no. 3, p. 035203, 2013.
[125] K. O. Hill and G. Meltz, “Fiber bragg grating technology fundamentals and overview,” Journal of lightwave technology, vol. 15, no. 8, pp. 1263—1276, 1997.
[126] M. Krause and H. Renner, “Theory and design of double-cavity raman fiber lasers,” Journal of lightwave technology, vol. 23, no.8, p. 2474, 2005.
[127] C. Zheng, H. Zhang, W. Cheng, M. Liu, P. Yan, and M. Gong, “Single mode mopa structured all-fiber yb pulse fiber amplifier at low repetition,” Laser Physics, vol. 21, no. 6, pp. 1081—1084, 2011.
[128] G. Voronov and N. B. Delone, “Ionization of the xenon atom by the electric field of ruby laser emission,” Sov. Phys. JETP Lett, vol. 1, p. 66, 1965.
[129] P. Agostini, G. Barjot, J. Bonnal, G. Mainfray, C. Manus, and J. Morellec, “Multi-photon ionization of hydrogen and rare gases,” IEEE Journal of Quantum Electronics, vol. 4, no. 10, pp. 667—669, 1968.
[130] N. B. Delone and V. Krainov, Multiphoton processes in atoms, vol. 13. Springer Science & Business Media, 2012.
[131] P. Gibbon, Short pulse laser interactions with matter. World Scientific Publishing Company, 2004.
[132] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, “Free-free transitions following six-photon ionization of xenon atoms,” Physical Review Letters, vol. 42, no. 17, p. 1127, 1979.
[133] Y. Gontier and M. Trahin, “Energetic electron generation by multiphoton absorption,” Journal of Physics B: Atomic and Molecular Physics, vol. 13, no. 22, p. 4383, 1980.
[134] L. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP, vol. 20, no. 5, pp. 1307—1314, 1965.
[135] A. Perelomov, V. Popov, and M. Terentaeev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP, vol. 23, no. 5, pp. 924—934, 1966.
[136] Y. L. Klimontovich, The Statistical Theory of Non-Equilibrium Processes in a Plasma: International Series of Monographs in Natural Philosophy, vol. 9. Elsevier, 2013.
[137] F. Reif, Fundamentals of statistical and thermal physics, vol. 445. McGrawHill Book Company, New York, 1965.
[138] A. Vlasov, “The vibrational properties of an electron gas,” Physics-Uspekhi, vol. 10, no. 6, pp. 721—733, 1968.
[139] L. Landau, “Die kinetische gleichung fuer den fall coulombscher wechselwirkung,” Phys. Z. Sowjet, vol. 10, p. 154, 1936.
[140] A. Lenard, “On bogoliubov’s kinetic equation for a spatially homogeneous plasma,” Annals of Physics, vol. 10, no. 3, pp. 390—400, 1960.
[141] W. M. MacDonald, M. N. Rosenbluth, and W. Chuck, “Relaxation of a system of particles with coulomb interactions,” Physical Review, vol. 107, no. 2, p. 350, 1957.
[142] S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Reviews of modern physics, vol. 15, no. 1, p. 1, 1943.
[143] F. L. Hinton, “Collisional transport in plasma,” Handbook of Plasma Physics, vol. 1, p. 147, 1983.
[144] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion of Gases, Notes Added in 1951. Cambridge university press, 1952.
[145] L. Spitzer Jr and R. Harm, “Transport phenomena in a completely ionized gas,” Physical Review, vol. 89, no. 5, p. 977, 1953.
[146] D. Duchs and H. Griem, “Computer study of the dynamic phase of a small θ-pinch,” Physics of Fluids (1958-1988), vol. 9, no. 6, pp. 1099—1109, 1966.
[147] V. Silin, “Nonlinear high-frequency plasma conductivity,” Sov. Phys. JETP, vol.20, no. 6, pp. 1510—1514, 1965.
[148] J. Dawson and C. Oberman, “High-frequency conductivity and the emission and absorption coefficients of a fully ionized plasma,” Physics of Fluids (1958-1988), vol. 5, no. 5, pp. 517—524, 1962.
[149] C. Decker, W. Mori, J. Dawson, and T. Katsouleas, “Nonlinear collisional absorption in laser-driven plasmas,” Physics of Plasmas (1994-present), vol. 1, no. 12, pp. 4043—4049, 1994.
[150] T. W. Johnston and J. M. Dawson, “Correct values for high-frequency power absorption by inverse bremsstrahlung in plasmas,” Physics of Fluids (1958-1988), vol. 16, no. 5, pp. 722—722, 1973.
[151] A. Kawabata and R. Kubo, “Electronic properties of .ne metallic particles. ii. plasma resonance absorption,” Journal of the Physical Society of Japan, vol. 21, no. 9, pp. 1765—1772, 1966.
[152] H. London, “The high-frequency resistance of superconducting tin,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 176, no. 967, pp. 522—533, 1940.
[153] D. J. Nicholas, The development of fluid codes for the laser compression of plasma. Chilton: RAL, 1982.
[154] Y. Lee, “A model for ionization balance and l-shell spectroscopy of non-lte plasmas,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 38, no. 2, pp. 131—145, 1987.
[155] M. N. Saha, “Liii. ionization in the solar chromosphere,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 40, no. 238, pp. 472—488, 1920.
[156] G. Gupta and B. Sinha, “Parametric dependence of x-ray laser gain in laser plasmas for 3p-3s transitions in neon-like krypton ions,” Journal of applied physics, vol. 77, no. 6, pp. 2287—2290, 1995.
[157] J. Huba, “Nrl plasma formulary supported by the office of naval research,” Naval Research Laboratory, 2013.
[158] M. Busquet, M. Klapisch, and A. Bar-Shalom, “Absorption and emission profiles of unresolved arrays near local thermodynamic equilibrium,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 81, no. 1, pp. 255—263, 2003.
[159] G. Wertheim, M. Butler, K. West, and D. Buchanan, “Determination of the gaussian and lorentzian content of experimental line shapes,” Review of Scientific Instruments, vol. 45, no. 11, pp. 1369—1371, 1974.
[160] M. Itoh, T. Yabe, and S. Kiyokawa, “Collisional-radiative and average-ion hybrid models for atomic processes in high-z plasmas,” Physical Review A, vol. 35, no. 1, p. 233, 1987.
[161] S. Chandrasekhar, An introduction to the study of stellar structure, vol. 2. Courier Corporation, 1957.
[162] D. R. Lide, CRC handbook of chemistry and physics. CRC press, 2004.
[163] P. Carroll and E. Kennedy, “Laser-produced plasmas,” Contemporary Physics, vol. 22, no. 1, pp. 61—96, 1981.
[164] W. L. Kruer, “The physics of laser plasma interactions,” 1988.
[165] A. Djaoui, “A user guide for the laser-plasma simulation code: Med103,” 1996.
[166] P. Rodgers, A. Rogoyski, and S. Rose, “Med101: a laser-plasma simulation code,” User guide, 1989.
[167] C. Fauquignon and F. Floux, “Hydrodynamic behavior of solid deuterium under laser heating,” Physics of Fluids (1958-1988), vol. 13, no. 2, pp. 386—391, 1970.
[168] G. Gupta and B. Sinha, “Effect of ionization and recombination coefficients on the charge-state distribution of ions in laser-produced aluminum plasmas,” Physical Review E, vol. 56, no. 2, p. 2104, 1997.
[169] K. Garlo., M. van den Donker, J. van der Mullen, F. van Goor, R. Brummans, and J. Jonkers, “Simple model for laser-produced, mass-limited water-droplet plasmas,” Physical Review E, vol. 66, no. 3, p. 036403, 2002.
[170] M. Klapisch, “A program for atomic wavefunction computations by the parametric potential method,” Computer Physics Communications, vol. 2, no. 5, pp. 239—260, 1971.
[171] J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Transition arrays in the spectra of ionized atoms,” Advances in atomic and molecular physics, vol. 23, pp. 131—195, 1988.
[172] F. Jin and M. Richardson, “New laser plasma source for extreme-ultraviolet lithography,” Applied optics, vol. 34, no. 25, pp. 5750—5760, 1995.
[173] D. Salzmann, “Atomic physics in hot plasmas,” International Series of Monographs on Physics, vol. 97, 1998.
[174] T. Higashiguchi, K. Kawasaki, W. Sasaki, and S. Kubodera, “Enhancement of extreme ultraviolet emission from a lithium plasma by use of dual laser pulses,” Applied physics letters, vol. 88, no. 16, p. 161502, 2006.
[175] P. Dunne, G. OaeSullivan, and D. OaeReilly, “Prepulse-enhanced narrow band-width soft x-ray emission from a low debris, subnanosecond, laser plasma source,” Applied Physics Letters, vol. 76, no. 1, pp. 34—36, 2000.
[176] S. Dusterer, H. Schwoerer, W. Ziegler, D. Salzmann, and R. Sauerbrey, “Effects of a prepulse on laser-induced euv radiation conversion efficiency,” Applied Physics B, vol. 76, no. 1, pp. 17—21, 2003.
[177] R. Shanny, J. M. Dawson, and J. M. Greene, “One-dimensional model of a lorentz plasma,” Physics of Fluids (1958-1988), vol. 10, no. 6, pp. 1281—1287, 1967.
[178] L. Spitzer, “Physics of fully ionized plasmas,” J. Wiley and Sons, New York, 1962.
[179] A. H. Boozer and G. Kuo-Petravic, “Monte carlo evaluation of transport coefficients,” Physics of Fluids (1958-1988),vol.24, no. 5, pp. 851—859, 1981.
[180] Y. Sentoku, K. Mima, Y. Kishimoto, and M. Honda, “Effects of relativistic binary collisions on pic simulation of laser plasmas,” Journal of the Physical Society of Japan, vol. 67, no. 12, pp. 4084—4088, 1998.
[181] E. Lifschitz and L. Pitajewski, “Physical kinetics,” in Textbook of theoretical physics. 10, Course of theoretical physics, Oxford: Pergamon Press, 1981, 1983.
[182] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems,” Physical review, vol. 94, no. 3, p. 511, 1954.
[183] N. Rostoker, “Superposition of dressed test particles,” Physics of Fluids (1958-1988), vol. 7, no. 4, pp. 479—490, 1964.
[184] S. Ichimaru, “Hydrodynamic fluctuations and correlations in a plasma,” Journal of the Physical Society of Japan, vol. 19, no. 7, pp. 1207—1212, 1964.
[185] S. Ichimaru, “Coulomb correlations in inhomogeneous many-particle systems,” Physical Review, vol. 140, no. 1B, p. B226, 1965.
[186] S. Ichimaru, “Statistical plasma physics, volume i: Basic principles, vol. 87 of frontiers in physics,” 1992.
[187] L. Landau, “Kinetic equation for the coulomb effect,” Phys. Z. Sowjetunion, vol. 10, p. 154, 1936.
[188] L. Schlessinger and J. Wright, “Inverse-bremsstrahlung absorption rate in an in-tense laser field,” Physical Review A, vol. 20, no.5, p. 1934, 1979.
[189] A. Y. Polishchuk and J. Meyer-Ter-Vehn, “Electron-ion relaxation in a plasma interacting with an intense laser field,” Physical Review E, vol. 49, no.1, p.663, 1994.
[190] G. Pert, “Inverse bremsstrahlung in strong radiation fields at low temperatures,” Physical Review E, vol. 51, no. 5, p. 4778, 1995.
[191] J. Boris, “Relativistic plasma simulation-optimization of a hybrid code,” in Proc. Fourth Conf. Num. Sim. Plasmas, Naval Res. Lab, Wash. DC, pp. 3—67, 1970.
[192] K. S. Yee et al., “Numerical solution of initial boundary value problems involving maxwell .a.es equations in isotropic media,” IEEE Trans. Antennas Propag, vol. 14, no. 3, pp. 302—307, 1966.
[193] W. Lotz, “Electron-impact ionization cross-sections for atoms up to z= 108,” Zeitschrift fur Physik, vol. 232, no. 2, pp. 101—107, 1970.
[194] M. Ammosov, N. Delone, V. Krainov, A. Perelomov, V. Popov, M. Terent’ev, G. L. Yudin, and M. Y. Ivanov, “Tunnel ionization of complex atoms and of atomic ions in an alternating,” Soviet physics JETP, vol. 64, no. 6, pp. 1191—1194, 1986.
[195] S. Harilal, M. S. Tillack, Y. Tao, B. O’Shay, R. Paguio, and A. Nikroo, “Extreme-ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets,” Optics letters, vol. 31, no. 10, pp. 1549—1551, 2006.
[196] A. Roy, S. M. Hassan, S. S. Harilal, A. Endo, T. Mocek, and A. Hassanein, “Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field,” Physics of Plasmas (1994-present), vol. 21, no. 5, p. 053106, 2014.
[197] W. Kruer and K. Estabrook, “J× b heating by very intense laser light,” Physics of Fluids (1958-1988), vol. 28, no. 1, pp. 430—432, 1985.
[198] J. A. Buck, Fundamentals of optical fibers. John Wiley & Sons, 2004.
[199] A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Optics express, vol. 19, no. 11, pp. 10180—10192, 2011.
[200] C. Jauregui, T. Eidam, J. Limpert, and A. Tunnermann, “Impact of modal interference on the beam quality of high-power fiber amplifiers,” Optics express, vol. 19, no. 4, pp. 3258—3271, 2011.
[201] H. Lee and G. P. Agrawal, “Impact of self-phase modulation on instabilities in fiber lasers,” Quantum Electronics, IEEE Journal of, vol. 46, no. 12, pp. 1732— 1738, 2010.
[202] C.-L. Chang, Y.-Y. Lin, P.-Y. Lai, Y.-Y. Li, D.-Y. Jheng, S.-H. Chen, and S.-L. Huang, “Intense supercontinuum generation in a nanosecond nonlinear all-pm-fiber power amplifier,” in SPIE LASE, pp. 89612S—89612S, International Society for Optics and Photonics, 2014.
[203] T. Otsuka, D. Kilbane, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, and G. OaeSullivan, “Systematic investigation of self-absorption and con-version efficiency of 6.7 nm extreme ultraviolet sources,” Applied Physics Letters, vol. 97, no. 23, p. 231503, 2010.
[204] T. Higashiguchi, B. Li, Y. Suzuki, M. Kawasaki, H. Ohashi, S. Torii, D. Nakamura, A. Takahashi, T. Okada, W. Jiang, et al., “Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth gd plasmas,” Optics express, vol. 21, no. 26, pp. 31837—31845, 2013.
[205] H. Ohashi, T. Higashiguchi, Y. Suzuki, G. Arai, B. Li, P. Dunne, G. OaeSullivan, H. A. Sakaue, D. Kato, I. Murakami, et al., “Characteristics of x-ray emission from optically thin high-z plasmas in the soft x-ray region,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 48, no. 14, p. 144011, 2015.
[206] T. Higashiguchi, T. Otsuka, W. Jiang, A. Endo, B. Li, P. Dunne, and G. O’Sullivan, “Efficient ’water window’ soft x-ray high-z plasma source,” in Journal of Physics: Conference Series, vol. 463, p. 012024, IOP Publishing, 2013.
[207] D. A. Gurnett and A. Bhattacharjee, Introduction to plasma physics: with space and laboratory applications. Cambridge university press, 2005.
[208] T. J. M. Boyd and J. J. Sanderson, The physics of plasmas. Cambridge University Press, 2003.
[209] R. J. Goldston and P. H. Rutherford, Introduction to plasma physics. CRC Press, 1995.
[210] L. D. Landau, “On the vibrations of the electronic plasma,” Zh. Eksp. Teor. Fiz., vol. 10, p. 25, 1946.
[211] M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, “Fokker-Planck equation for an inverse-square force,” Physical Review, vol. 107, no. 1, p. 1, 1957.
[212] D. Pines and D. Bohm, “A collective description of electron interactions: Ii. collective vs individual particle aspects of the interactions,” Physical Review, vol. 85, no. 2, p. 338, 1952.
指導教授 陳仕宏(Shih-Hung Chen) 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明