博碩士論文 982202013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:13.58.137.218
姓名 林宜潔(I-Chieh Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 萊斯納-諾德斯特洛姆黑洞下的成對產生
(Spontaneous Pair Production in Reissner-Nordstrӧm Black Holes)
相關論文
★ 由Quintessencec和Phantom組成雙純量場的暗能量模型★ 自引力球殼穿隧的Hawking輻射
★ Gauss-Bonnet 重力理論中穿隧效應的霍金輻射★ SL(4,R)理論下的漸近平直對稱轉換
★ 外加B-場下於三維球面上之土坡弦及銳牙弦★ 克爾-紐曼/共形場中的三點關聯函數
★ 時空的熱力學面向★ 四維黑洞的全息描述
★ 自旋粒子在萊斯納-諾思通黑洞的生成★ Pseudo Spectral Method for Holographic Josephson Junction
★ 克爾-紐曼黑洞下的成對產生★ Holographic Josephson Junction in Various Dimensions
★ Characteristics of Cylindrically Symmetric Spacetimes in General Relativity★ Force Free Electrodynamics in Extremal Kerr-Newman Black Holes
★ Schwinger Effect in Near Extremal Charged Black Holes★ Thermodynamics of Scalar Field in Schwarzschild Black Holes
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文研究在帶電的萊斯納-諾德斯特洛姆黑洞幾何背景時空下自發性的粒子成對產生。在這種背景下的粒子成對生主要藉由與重力場作用``Hawking radiation',或是與電磁場交互作用``Schwinger mechanism'產生。背景的電場和幾何間存在交互作用,因此這兩者對於粒子成對產生的效應也是密不可分的。在極限或接近極限兩種情況,RN黑洞背景中成對產生率的解析型式可藉由加入兩種邊界條件得出。所考慮的這個系統等價於在AdS2×S2背景幾何中加入一個測試用的帶電純量場。已知在極限黑洞下不會發生Hawking radiation,所以在這種背景下的粒子成對產生是藉由Schwinger mechanism來達成。這個黑洞因此損失了電荷,而從極限黑洞變成接近極限的黑洞,這個時候Hawking radiation和Schwinger mechanism將會共同主導粒子產生的機制。我們發現在偏離但接近極限的黑洞背景下的粒子產生率比在極限黑洞下還低。這是因為此時黑洞的表面重力增加在加強Hawking radiation之外,也會抵消電場的排斥力效應,造成Schwinger pair production被大幅的抑制。這兩種粒子成對產生機制無法單純由引用本文所介紹的邊界條件來作區別。
摘要(英) The spontaneous pair production in a charged geometrical background is studied. In this background, pair productions are driven by either gravity (Hawking radiation) or electromagnetic force (Schwinger mechanism). The electric field and geometry are coupled together to implement particle productions. The analytically obtained pair production rate in a (near) extremal Reissner-Nordstr¨om (RN) black hole is done by applying two equivalent boundary conditions. The present system is equivalent to a charged scalar field probed into a AdS 2 × S 2 geometry. It is known that in the extremal RN geometry no Hawking radiation will happen, so the pair production is totally caused by Schwinger mechanism. After the black hole losses its charge via Schwinger mechanism, the extremal black hole becomes near-extremal, and Hawking radiation together with Schwinger pair production are responsible for particle pro-
duction rate now. It is shown that the particle production rate in the near-extremal RN black holes are lower than that in the extremal RN black holes. This is because
the increased surface gravity which enhance Hawking radiation will compete the compelling electric force, and lower the Schwinger pair production rate. Since the increase
in Hawking pair production can not compensate the decrease in Schwinger pair production, the particle production rate in the near-extremal RN geometry is lower than the extremal case. Therefore, Hawking radiation and Schwinger pair production are indistinguishable by simply applying these boundary conditions.
關鍵字(中) ★ 霍金輻射
★ 黑洞
★ 成對產生
關鍵字(英) ★ Schwinger mechanism
★ black hole
★ Hawking radiation
論文目次 1 Introduction 1
2 Spontaneous Pair Production 3
2.1 Hawking Radiation and Schwringer Pair Production 4
2.2 Probing the Emission 6
2.2.1 Outer Boundary Condition 9
2.2.2 Inner Boundary Condition 10
2.2.3 Equivalence of Two Boundary Conditions 11
3 Spontaneous Pair Production in Reissner-Nordstr¨om Black Holes 12
3.1 Reissner-Nordstr¨om Black Holes 12
3.1.1 Geometric Structure 13
3.2 Probe Charged Scalar 15
3.3 Pair Production in Extremal Case 17
3.3.1 Outer Boundary Condition 18
3.3.2 Inner Boundary Condition 19
3.3.3 Quasi-normal Modes 20
3.4 Pair Production in Near-Extremal Case 21
3.4.1 Outer Boundary Condition 23
3.4.2 Inner Boundary Condition 23
3.4.3 Quasi-normal Modes 25
4 Conclusions 26
Bibliography 28
A Conservation Theorem 30
B Asymptotic Limits and relations of Functions 32
B.1 Asymptotic Limits of Wittaker Functions 32
B.2 Asymptotic Limits of Hypergeometric Functions 33
B.3 Some Properties of Gamma Functions 33
參考文獻 [1] J. D. Bekenstein, “Extraction of Energy and Charge from a Black Hole”, Phys. Rev. D 7 (1973) 949.
[2] S. W. Hawking, “Particle Creation by Black Holes”, Commun. Math. Phys. 43 (1975) 199.
[3] B. Carter, “Charge and particle conservation in black hole decay,” Phys. Rev.
Lett. 33, 558 (1974).
[4] G. W. Gibbons, “Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes” Commun. math. Phys. 44 (1975) 245.
[5] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231.
[6] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253.
[7] M. Guica, T. Hartman, W. Song, and A. Strominger, “The Kerr/CFT Correspondence,” [arXiv:0809.4266v1 [hep-th]].
[8] C.-M. Chen, Y.-M. Huang, J.-R. Sun, M.-F. Wu, and S.-J. Zou, “ Twofold Hidden Conformal Symmetries of the Kerr-Newman Black Hole,” Phys. Rev. D. 82 (2010) 066004 [arXiv:1006.4097v2 [hep-th]].
[9] C. Gabriel, “Spontaneous loss of charge of the Reissner-Nordstrom black hole,”Phys. Rev. D 63 (2001) 024010 [arXiv:gr-qc/0010103].
[10] W. A. Hiscock, and L. D. Weems, “Evolution of charged evaporating black holes,”phys. Rev. D 41 (1990) 4.
[11] M. K. Parikh and F. Wilczek, “Hawking Radiation as Tunneling”, Phys. Rev. Lett. 85 (2000) 5042 [arXiv:9907001 [hep-th]].
[12] M. K. Parikh, “Energy Conservation and Hawking Radiation”, hep-th/0402166.
[13] K. D. Kokkotas and B. G. Schmidt, “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Rel. 2 (1999) 2 [arXiv:9909058v1[gr-qc]].
[14] R. A. Konoplya and A. Zhidenko, “Quasinormal modes of black holes: From astrophysics to string theory”, Rev. Mod. Phys. 83 (2011) 793 [arX-ive:1102.4014v2].
[15] S. P. Kim and D. N. Page, “Schwinger Pair Production in dS(2) and AdS(2),”
Phys. Rev. D 78 (2008) 103517 [arXiv:0803.2555 [hep-th]].
[16] C.-M. Chen, Y.-M. Huang and S.-J. Zou, “Holographic Duals of Near-extremal Reissner-Nordstrom Black Holes,” JHEP 1003 (2010) 123 [arXiv:1001.2833 [hep-th]].
[17] C.-M. Chen and J.-R. Sun, “Hidden Conformal Symmetry of the Reissner-Nordstrøm Black Holes,” JHEP 1008 (2010) 034 [arXiv:1004.3963 [hep-th]].
[18] C.-M. Chen and J.-R. Sun, “Holographic Dual of the Reissner-Nordstr¨om Black Hole,” J. Phys. Conf. Ser. 330 (2011) 012009 [arXiv:1106.4407 [hep-th]].
指導教授 陳江梅(Chiang-Mei Chen) 審核日期 2012-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明