博碩士論文 982202027 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:
姓名 王靖賢(Jing-shian Wang)  查詢紙本館藏   畢業系所 物理學系
(The physical properties of phytosterol-containing lipid bilayers)
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ 含固醇的脂質雙層膜的形態及相行為的研究★ The effects of composition and thermal history on the properties of supported lipid bilayers
★ The effect of sterol on the POPE/DPPC membranes★ 麥角固醇對含膽固醇的脂雙層膜的影響
★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes★ Deuterium NMR Study of the effect of 7- dehydrocholesterol on the POPE Membranes
★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質
★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study
★ An AFM Study on Supported Lipid Bilayers with and without Sterol★ β-谷固醇對POPE膜物理特性的影響
★ 固醇結構對PC膜物理特性的影響★ 人造細胞膜的相行為及脂質-固醇交互作用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在生物膜存在橫向異質的特性,這些異質的特性是指膜中有各種的脂質區塊。這些區塊中的脂質與蛋白質的組成成分及物理特性都不同。近期研究表示除了膽固醇外,其他固醇:例如麥胚固醇(β-sitosterol)也能引導產生出這脂質區塊,這些脂質區塊稱之為脂質浮排(lipid raft)。麥胚固醇為植物固醇的一種,其化學結構與膽固醇相近,過去研究重點著重於膽固醇而較少探討植物性固醇。文獻上發現在生物體內麥胚固醇能降低膽固醇的在血管中濃度並且減少心血管疾病的發生。我們使用氘核磁共振儀(2H NMR)研究麥胚固醇與DPPC人造細胞膜的物理特性。其方法為將DPPC上sn-1的氫代換成氘,觀察不同溫度與麥胚固醇的濃度變化所得到的光譜圖。結果顯示,麥胚固醇有不同影響於不同相位的DPPC膜。麥胚固醇能降低在相變溫度之下DPPC膜的有序程度;然而卻增加相變溫度之上DPPC膜的有序程度。我們可以從核磁共振光譜圖得到DPPC-d31/β-sitosterol膜的部分相圖,此部分相圖具有so+ld phase,so+lo phase和lo+ld phase三個兩相共存區域與一條三相共存線。
摘要(英) Lateral heterogeneities exist in biological membranes of living cell. The heterogeneity is proposed to be a coexistence of lipid domains with differing degrees of order, lipid/protein compositions, and physical properties in the membrane. Recent evidence suggests that not only cholesterol, the major sterol found in mammals, but other sterols such as β-sitosterol are important for the formation of a specific domain called lipid raft. β-sitosterol is one of plant sterols and its chemical structure is similar to that of cholesterol. While most study of lipid-sterol interaction focuses on cholesterol, little is known about plane sterols. In addition, it is pointed out that β-sitosterol decreases serum of cholesterol and reduced cardiovascular disease. We investigate the phase behavior of model membranes composed of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and β-sitosterol using deuterium nuclear magnetic resonance (2H NMR). The sn-1 chain of DPPC is deuterium labeled. The 2H NMR spectra were taken as a function of temperature and β-sitosterol concentration. Our data shows that addition of β-sitosterol promotes the formation of the lo phase. Moreover, β-sitosterol has opposite ordering effect on the DPPC membranes below and above Tm: It decreases the order of DPPC membranes below Tm, whereas increases the chain orders of DPPC above Tm. Finally, the partial phase diagram is determined from 2H NMR spectra. Coexistence of so+ld phase is observed at low β-sitosterol concentration. On the other hand, there are two two-phase coexistence regions, so+lo and lo+ld, found below and above Tm, respectively, at intermediated β-sitosterol concentration. A three-phase line separates these two regions is observed at 37°C.
關鍵字(中) ★ 膽固醇
★ 麥胚固醇
關鍵字(英) ★ ld
★ phase transition
★ lo
★ β-sitosterol
★ lipid raft
★ so
論文目次 Table of Contents
Abstract I
Abstract in Chinese III
Acknowledgements IV
Table of Contents V
List of Figures VII
Chapter1 1
Introduction 1
1.1 Biological membrane 1
1.2 β-sitosterol 2
1.3 Fluid mosaic model 3
1.4 Lipid 4
1.5 Lipid raft 5
1.6 Phase behavior 6
1.7 DPPC membrane 8
Chapter 2 10
2.1 Sample preparation 10
2.2 NMR principle 10
2.2.1 Quadrupole interaction 12
2.2.2 Powder Spectrum 13
2.2.3 Quadrupolar Splitting and SCD 15
2.2.4 Average chain order parameter (first moment) 16
2.3 Hardware 18
Chapter 3 21
Results and discussion 21
Chapter 4 37
Conclusions 37
References 39
參考文獻 References
[1] Keisuke Matsuoka,Tomomi Nakazawa, Ai Nakamura, Chikako Honda,
Kazutoyo Endo, and Masamichi Tsukada. Study of thermodynamic parameters for solubilization of plant sterol and stanol in bile salt micelles. Chemistry and Physics of Lipids 154 (2008) 87–93.
[2] Robert A. Moreaua, Bruce D. Whitaker, and Kevin B. Hicks. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progress in Lipid Research 41 (2002) 457–500.
[3] Weihrauch JL, Gardner JM. Sterol content of foods of plant origin. J Am Diet Assoc. 73 (1978) 39-47.
[4] Katarzyna Ha˛c-Wydro, Paweł Wydro, Patrycja Dynarowicz-Ła˛tka, Maria Paluch. Cholesterol and phytosterols effect on sphingomyelin/phosphatidylcholine model Membranes-Thermodynamic analysis of the interactions in ternary monolayers. Journal of Colloid and Interface Science 329 (2009) 265–272.
[5] Chanatip Rujanavech and DavFid. Silbert. Effect of sterol structure on the partition of sterol between phospholipid vesicles of different composition. The Journal of Biological Chemistry 261 (1986) 7215-7219.
[6] F. Jeffrey Field and Satya N. Mathur. β-Sitosterol: esterification by intestinal acylcoenzyme A:cholesterol acyltransferase (ACAT) and its effect on cholesterol esterification. Journal of Lipid Research 24 (1983) 409-417.
[7] Katrin K. Halling, J. Peter Slotte. Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance
energy transfer and detergent-induced solubilization. Biochimica et Biophysica Acta 1664 (2004) 161–171.
[8] Claudia Silva, Francisco J. Aranda, Antonio Ortiz, Vicente Martinez, Micaela Carvajal, Jose A. Teruel. Molecular aspects of the interaction between plants sterols and DPPC bilayers an experimental and theoretical approach. Journal of Colloid and Interface Science 358 (2011) 192–201.
[9] S.J. singer and G. L. Nicolson. The fluid mosaic model of the structure of cell membranes. Science. 175 (1972) 720-731.
[10] N. Campbell, J. Reece, and L. Mitchell. Biology (3rd edn). Addison Wesley Longman, New York, 1999.
[11] Simons, K and E. Ikonen. Functional rafts in cell membranes. Nature. 387 (1997) 569-572.
[12] D. L. Nelson and M. M. Cox. Lehninger principles of biochemistry (4th edn). Worth Publisher, New York, 2005.
[13] Ya-Wei Hsueh, Kyle Gilbert, C. Trandum, M. Zuckermann, and Jenifer Thewalt. The effect of ergosterol on dipalmitoylphosphatidylcholine bilayer: a deuterium NMR
and calorimetric study. Biophy. J. 88 (2005) 1799-1808.
[14] David A. Mannock, Ruthven N. A. Lewis, and Ronald N. McElhaney. Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphosphatidylcholine bilayer membranes. Biophy. J. 91 (2006) 3327-3340.
[15] Mary Elizabeth Beattie, Sarah L. Veatch, Benjamin L. Stottrup, and Sarah L. Keller. Sterol structure determines miscibility versus melting transitions in lipid vesicles. Biophy. J. 89 (2005) 1760-1768.
[16] Ya-wei Hsueh, Mei-Ting Chen, Philipus J. Patty, Christian Code, John Cheng, Barbara J. Frisken, Martin Zuckermann, and Jenifer Thewalt. Ergosterol in POPC membranes: physical properties and comparison with structurally similar sterols. Biophy. J. 92 (2007) 1606-1615.
[17] J. Eisenblätter and R. Winter. Pressure effects on the structure and phase behavior of DMPC-Gramicidin lipid bilayers: a synchrotron SAXS and 2H-NMR spectroscopy study. Biophy. J. 90 (2006) 956-966.
[18] Sarah L. Veatch and Sarah L. Keller. Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89 (26) (2002) 268101.
[19] Sarah L. Veatch and Sarah L. keller. Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94 (14) (2005) 148101.
[20] Frédérick de Meyer and Berend Smit. Effect of cholesterol on the structure of a phospholipid bilayer. Pnas. 106 (2009) 3654-3658.
[21] Hans-Josachim Lehmler and Paul M. Bummer. Mixing behavior of 10-(perfluorohexyl)-decanol and DPPC. Colloids Surf B Biointerfaces. 44 (2005) 74-81.
[22] Miho Yanagisawa, Masayuki Imai, and Takashi Taniguchi. Shape deformation of ternary vesicles coupled with phase separation. Phys. Rev. Lett. 100 (14) (2008) 148102.
[23] J. L. Rubenstein, B. A. Smith, and H. M. McConnell. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc. Natl. Acad. Sci. 76 (1976) 15-18.
[24] Juan M. Vanegas, Roland Faller, and Marjorie L. Longo, Influence of ethanol on lipid/sterol membranes: phase diagram construction from AFM imaging. Langmuir Lett. 26 (2010), 10415–10418.
[25] C. P. Slichter. Principles of magnetic resonance (3rd edn). Springer-Verlag, Berlin, 1990.
[26] James H. Davis. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochimica et Biophysica Acta 737 (1983) 117– 171.
[27] P.J.Hore. Nuclear magnetic resonance. Oxford University Press, New York, 1995.
指導教授 薛雅薇(Ya-Wei Hsueh) 審核日期 2011-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明