博碩士論文 982203015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:34.239.172.52
姓名 陳思蒨(Szu-Chien Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討
(Applications of PANI and PEDOT as Cathodic Catalysts for Pt-free Dye-Sensitized Solar Cells)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池
★ 染料敏化太陽能電池用二茂鐵系統電解質的探討★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池
★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用★ Design and Synthesis of Ruthenium Dyes for High Open-circuit Voltage Dye-sensitized Solar Cells
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 染料敏化太陽能電池 ( DSSC ) 因具有低成本、多彩、質輕、製程簡單、可大面積製作、且可製備成可撓曲式…等優點,具有極高發展潛力而備受到科學家們的重視。DSSC中,對電極(陰極)上的催化劑扮演著催化電解質中I3- / I- 還原反應及傳送電洞至陰極的角色,故材料需具備高催化活性及高導電度的特性。目前,鉑 ( Pt ) 為最廣泛被用來作為DSSC中對電極上催化劑的材料,然而,Pt的價格高,且製作過程中需高溫鍛燒或高真空的蒸鍍製程也增加了大面積製作及應用在可撓式基版的困難度。本實驗主要是利用導電高分子聚苯胺 ( PANI ) 及聚二氧乙基噻吩 ( PEDOT ) 作為染料敏化太陽能電池中陰極催化劑。研究中發現PANI粉末及PEDOT粉末可均勻分散在HFIP ( 1,1,1,3,3,3-Hexafluoro-2-propanol ) 中,不會產生導電高分子的聚集。由導電高分子 / HFIP溶液製備的高分子膜可緊密的附著於FTO電極上;而且HFIP的沸點低 ( 59 °C),導電高分子溶液在製備成膜的過程中不需加熱,故可減少能源的消耗。以PANI - HFIP為陰極催化劑,搭配本實驗室所合成的CYC-B11染料為光敏劑所組裝成的DSSC元件其光電轉換效率為7.77 % ( Pt:8.83 % );若使用硫酸摻雜之聚苯胺/ HFIP溶液鍍在FTO上所製備PANI- SO4-HFIP對電極,搭配CYC-B11光敏劑所組裝之電池元件的光電轉換效率可高達8.76 % ( Pt:8.83 % )。另外以 PEDOT 為陰極催化劑,以CYC-B11為光敏劑所組裝的DSSC元件,其光電轉換效率最高可達8.98 % ( Pt:8.74 % ),證實導電高分子陰極催化劑可以由溶液製程製備,達到減低成本的目的。
摘要(英) Dye-Sensitized Solar Cells (DSSCs) are attractive the third generation thin film solar cells due to their low cost, light weight, colorful, fabricated easily and flexible. Generally, platinum is employed as a catalyst for the cathode in DSSC to catalyze the reduction reaction (I3- to 3I-) of the electrolyte. However, platinum is one of the most expensive materials on the earth. The preparation of Pt counter electrode at high temperature also increases the cost and difficulty in fabricating large-size device. Therefore, extensive studies have been carried out for developing other cheaper materials to replace Pt in DSSC. In this study, we investigated the performance of DSSCs using polyaniline (PANI) or poly(3,4-ethylenedioxythiophene) (PEDOT) as a catalyst on the counter electrode. We found that HFIP (Hexafluoroisopropanol) is a very good solvent for PANI and PEDOT powder. PANI and PEDOT counter electrode with large surface area and good conductivity can be made from PANI/HFIP and PEDOT/HFIP solution simply by spin coating at room pemperature, and the heating process is unnecessary. DSSC uses PANI/ FTO as a counter electrode exhibits an efficiency of 7.77 % with CYC-B11 as a sensitizer ( Pt:8.83 % ). Nevertheless, the efficiency of DSSC used PANI-SO4-HFIP CE (made from the H2SO4-Doped PANI/HFIP solution by spin coating the film on FTO) as counter elctrode achieves the highest efficiency of 8.76 %,which is comparable to that (8.83 %) of Pt-based DSSC under the same fabrication and measurement conditions. Furthermore, dispersing of PEDOT powder in HFIP was also used to prepare PEDOT counter electrode (PEDOT CE) by spin coating. The efficiency of PEDOT CE-based DSSC with CYC-B11 as sensitizer is 8.98 % ( Pt:8.74 % ). The results proved that conjugated polymers are good materials for replacing Pt as a counter electrode catalyst for DSSC.
關鍵字(中) ★ 染料敏化太陽能電池
★ 聚苯胺
★ 聚二氧乙基噻吩
★ 陰極催化劑
關鍵字(英) ★ PEDOT
★ Cathodic Catalysts
★ Dye-Sensitized solar cell
★ Polyaniline
論文目次 中文摘要 I
ABSTRACT II
謝誌 III
<目錄> IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2染料敏化太陽能電池 ( DSSC ) 的組成與工作原理 3
1.2.1 染料敏化太陽能電池的基本工作原理 3
1.2.2 染料敏化太陽能電池光電轉換效率測試 4
1.3 影響染料敏化太陽能電池光電轉換效率的因素 5
1.4應用於染料敏化太陽能電池中常見的催化劑材料 11
1.5 共軛導電高分子的性質與介紹 19
1.5.1 共軛導電高分子的發展與導電理論 19
1.5.2 聚苯胺的結構及性質 20
1.5.3導電高分子的製備方法 21
1.6 研究動機 23
第二章 實驗方法 24
2.1 實驗藥品及儀器 24
2.2 二氧化鈦奈米粒子的合成及漿料的製備 26
2.2.1 二氧化鈦奈米粒子的合成 26
2.2.2 適用於網印機( SCREEN PRINTING )之二氧化鈦漿料的製備 27
2.3 以SILANE 修飾FTO表面之修飾方法 27
2.4 聚苯胺對電極(PANI)的製備 28
2.4.1以同步聚合的方式製備聚苯胺對電極 28
2.4.2 利用聚苯胺粉末製備聚苯胺對電極 29
2.4.3具有高結晶性質的聚苯胺對電極的製備 29
2.5聚二氧乙基塞吩(PEDOT)對電極的製備 30
2.5.1製備聚二氧乙基噻吩對電極 30
2.6 染料敏化太陽能電池元件的組裝 31
2.6.1二氧化鈦陽極的製備 31
2.6.2 PT對電極的製備 32
2.6.3 太陽能電池的組裝 32
2.6.4 測量交流阻抗用之電池元件的製備 33
2.7.1 掃描式電子顯微鏡 ( SCANNING ELECTRON MICROSCOPE, SEM ) 34
2.7.2 紫外光/可見光/近紅外光吸收光譜儀 (UV/VIS/NIR SPECTROMETER) 35
2.7.3 旋轉塗佈機 (SPIN COATER) 35
2.7.4 電化學量測系統 (AUTOLAB POTENTIOSTAT /GALVANOSTAT) 36
2.7.5 交流阻抗儀 (AC-IMPEDANCE, AUTOLAB POTENTIOSTAT /GALVANOSTAT, PGSTAT30 WITH FRA2) 36
2.7.6 ZETA電位粒徑分佈儀 (ZETA POTENTIAL) 38
2.7.7 太陽光模擬器 (SOLAR SIMULATOR) 39
2.7.8 太陽能電池外部量子效率量測系統 (INCIDENT PHOTON CONVERSION EFFICIENY, IPCE) 39
第三章 結果與討論 41
3.1論文中所使用之樣品名稱及其製備方法 41
3.1 以同步聚合製備聚苯胺對電極 43
3.1.1表面型態對光電轉換效率的影響 43
3.1.2 使用不同苯胺單體濃度同步聚合製備之聚苯胺對電極所組裝之DSSC元件的光電轉換效率 48
3.2 溶劑對聚苯胺分散程度的影響 51
3.2.1聚苯胺在不同溶劑中的分散程度 51
3.2.2 用不同聚苯胺溶液所製備聚苯胺為對電極之DSSC元件的光電轉換效率 58
3.3 使用不同共軛陰離子製備的聚苯胺對電極所組裝之DSSC元件的光電轉換效率 66
3.4 具有高結晶性聚苯胺對電極在染料敏化太陽能電池上的應用 71
3.5 以PEDOT / HFIP溶液製備聚二氧乙基噻吩 ( PEDOT ) 對電極及其所組裝之DSSC元件的光電轉換效率 76
第四章 結論 94
第五章 參考文獻 96
參考文獻 1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt: Res. Appl. 2011, 19, 84-92.
2. B. O’Regan, M. Grätzel, Nature 1991, 353, 737-739.
3. V. Thavasi, V. Renugopalakrishnan, R. Jose, S. Ramakrishna, Mater. Sci. Eng. R. 2009, 63, 81-99.
4. M. Wei, Y. Konishi, H. Zhou, M. Yanagida, H. Sugihara, H. Arakawa, J. Mater. Chem, 2006,16, 1287-1293
5. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595-6663.
6. H. Yu, S. Zhang, H. Zhao, B. Xue, P. Liu, G. Will, J. Phys. Chem. C. 2009, 113, 16277-16282.
7. K. –S. Ahn, M. –S. Kang, J. –W. Lee, Y. –S. Kang, J. Appl. Phy. 2007, 101, 084312.
8. L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, S. Chen; F. Kong, X. Pan, L. Liang, K. Wang, J. Phys. Chem. B, 2007, 111, 358-362.
9. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry– Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gräetzel, J. Am. Chem. Soc. 1993, 115, 6382-6390.
10. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Nazeeruddin, R. Humphry– Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gräetzel, J. Am. Chem. Soc. 2001, 123, 1613-1624.
11. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt: Res. Appl. 2011, 19, 84-92.
12. W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Chem. Mater. 2010, 22, 1915–1925.
13. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry– Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gräetzel, J. Am. Chem. Soc. 1993, 115, 6382-6390.
14. G. Schlichthorl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B. 1997, 101, 8141-8155.
15. Y. Bai, J. Zhang, Y. Wang, M. Zhang, P. Wang, Langmuir, 2011, 27, 4749–4755.
16. A. Hauch, A. Georg, Electrochim. Acta 2001, 46, 3457-3466.
17. A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cell 1996, 44, 99-117.
18. T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I.Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel, J. Electrochem. Soc. 2006, 153, A2255.
19. J. G. Nam, Y. J. Park, B. S. Kim, J. S. Lee, Scripta Materialia 2010, 62, 148-150.
20. K. –C. Huang, Y. –C. Wang, R. –X. Dong, W. –C. Tsai, K. –W. Tsai, C. –C. Wang, Y. –H. Chen, R. Vittal, J. –J. Lin, K. –C. Ho, J. Mater. Chem. 2010, 20, 4067-4073.
21. B. Fang, S. –Q. Fan, J. H. Kim, M. –S. Kim, M. Kim, N. K. Chaudhari, J. Ko, J. –S. Yu, Langmuir 2010, 26, 11238-11243.
22. J. Wu, Q. Li; L. Fan, Z. Lan, P. Li, J. Lin, S. Hao, Journal of Power Sources 2008, 181, 172-176.
23. J. Xia, L. Chen, S. Yanagida, J. Mater. Chem. 2011, 21, 4644-4649.
24. S. S. Jeon, C. Kim, J. Ko, S. S. Im, J. Mater. Chem. 2011, 21, 8146-8151.
25. Y. Saito, T. Kitamura, Y. Wada, S. Yanagida, Chem. Lett. 2002, 31, 1060.
26. K. –M. Lee, W. –H. Chiu, H.-Y. Wei, C. –W. Hu, V. Suryanarayanan, W. –F. Hsieh, K. –C. Ho, Thin Solid Film 2010, 518, 1716-1721.
27. K. -M. Lee, P. –Y. Chen, C. –Y. Hsu, J. –H. Huang, W. –H. Ho, H. –C. Chen, K. –C. Ho, Journal of Power Sources 2009, 188, 313-318.
28. Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, L. Fan, Electrochem. Commun. 2008, 10, 1299-1302.
29. S. Ameen, M. S. Akhtar, Y. S. Kim, O. –B. Yang, H. –S. Shin, J. Phys. Chem. C 2010, 114, 4760-4764.
30. H. Sun, Y. Luo, Y. Zhang, D. Li, Z. Yu, K. Li, Q. Meng, J. Phys. Chem. C 2010, 114, 11673-11679.
31. G. Natta, G. Mazzanti, P. Corradini, Atti. Accad. Naz. Lince. Rend. Cl. Sci. Fis. Mat. Natur. 1958, 25, 3.
32. H. Shirakawa, S.Ikeda, Polym. J. 1971, 2, 231.
33. (a) H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, Chem. Soc. Chem. Commun. 1977, 578-580. (b) C. K. Chiang, C. R. Fincher, Y. W. Rark, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. Macdiarmid, Phys. Rev. Lett. 1977, 39, 1098-1011.
34. H. Letherby, J. Chem. Soc. 1862, 15, 16-17.
35. D. M. Mohilner, R. N. Adams, W. J. Argersinger, J. Am. Chem. Soc. 1962, 84, 3618-3622.
36. (a) Q. Wang, J.-E. Moser, M. Grätzel, J. Phys. Chem. B. 2005, 109, 14945 -14953. (b) C. Longo, A. F. Nogueira, M.- A. De Paoli, J. Phys. Chem. B. 2002, 106, 5925-5930.
37. http://www.silver-colloids.com/Tutorials/Intro/pcs1.html.
http://www.trendtop.com.tw/particle/Nano_sizer/Zeta_potential.html.
38. I. Sapurina, A. Riede, J. Stejskal, Synth. Met. 2001, 123, 503-507.
39. Y. Min, Y. Xia, A. G. Macdiarmid, A. J. Epstein, Synth. Met. 1995, 69, 159-160.
40. C. –Y. Chen, M. Wang, J. –Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J. D. Decoppet, J. –H. Tsai, C. Grätzel, C. –G. Wu, S. M. Zakeeruddin, M. Grätzel, ACS Nano 2009, 3, 3103-3109.
41. C. –G. Wu, C. –H. Chiang, CrystEngComm 2011, 13, 1406-1409.
42. C. –G. Wu; Y. –R. Yeh; J. –Y. Chen; Y. –H. Chiou, Polymer 2001, 42, 2877-2885.
43. S. Ahmad; J.-H. Yum; Z. Xianxi; M. Grätzel; H.-J. Butt; M. K. Nazeeruddin, J. Mater. Chem. 2010, 20, 1654-1658.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2011-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明