博碩士論文 982203023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.141.100.120
姓名 王儷靜(Li-Jing Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 推拉電子基β位取代BODIPY染料之合成與鑒定及其在染料敏化太陽能電池之應用
(Synthesis and Characterization of Donor-Acceptor β-Substituted BODIPY and their Application for Dye Sensitized Solar Cells)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 矽咔哚與矽螺旋雙笏物質之放光性質研究
★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討
★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成
★ 含雙噻吩環戊烷之電變色高分子的研究★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池
★ 高品質導電聚苯胺薄膜的合成及應用★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討
★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池
★ 染料敏化太陽能電池用二茂鐵系統電解質的探討★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要合成BODIPY ( 4,4-difluoro-4-bora-3a,4a-diaza-s-indancene ) 衍生物,並以其做為染料敏化太陽能電池 ( dye- sensitized solar cells,DSSCs) 之光敏化劑。結構設計採Donor-π-Acceptor ( D-π-A ) 共軛系統,以BODIPY為π-conjugation system,在BODIPY之β位取代上分別與triphenylamine unit、(diphenylamino)thiophenyl unit、bis(4- methoxyphenyl)aminothiophenyl unit三種不同之推電子基鍵結以及拉電子基cyanoacrylic acid鍵結。另外亦有合成4,4-dihydroxyaryl- diaza-s-indacene之BODIPY衍生物,並且首次將此染料用於DSSCs上。以核磁共振光譜儀(NMR)、質譜儀鑑定化合物之結構;紫外-可見光光譜儀測量化合物之吸收光譜圖;由循環電位儀與光電子光譜儀測量與計算得知化合物之HOMO、LUMO能階;利用密度泛函理論計算出染料分子最穩定之結構以及含時密度泛函理論計算 HOMO 與 LUMO 能階分子軌域的分佈與其相對應之能階,以及模擬染料在激發態時電子躍遷之情形;並將染料應用於DSSCs探討其元件性能。其中染料PPB具有最高之能量轉換效率 ( Jsc = 5.73mA / cm2, Voc = 590 mV, FF = 0.70, η = 2.36 % )。經由實驗測量與理論計算發現將氟置換為氧時使用4-tert-butylcatechol 與pyrocatechol會使PCC、PPtC與PTtC之HOMO能階轉移,降低電子注入效率。
元件製程中的製程方法也會影響效率之高低,利用不同的方法將染料吸附上二氧化鈦、不同之溶劑將染料配製出不同濃度、不同的染料浸泡時間、不同之電解液等方式將元件最佳化。
摘要(英) In this thesis, we synthesize the derivatives of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s- indancene), and apply these derivatives in dye sensitized solar cells. Use the conjugated system of Donor-π-Acceptor (D-π-A) on the design, and BODIPY play the role of π-conjugation system, bounding with differdent donor substituent such as triphenylamine unit, (diphenylamino)thiophenyl unit, bis(4-methoxyphenyl)aminothiophenyl unit, and acceptor substituent is cyanoacrylic acid on the β-substituent of BODIPY. On the other hand, we synthesize the derivatives of 4,4-dihydroxyaryl-diaza-s-indacene and for the first time apply these dye in dye sensitized solar cells. These compounds are characterized by 1H NMR, 13C NMR, mass spectrometry, their absorption spectrum were estimated by UV-visible spectrometer, and their energy level of HOMO and LUMO in solution and adsorb on TiO2 were estimated by cyclic voltammetry and low-energy photoelectron spectrometer, respectively, use density functional theory and time-dependent density functional theory to imitate the orbital and energy levels of HOMO and LUMO, and apply in DSSCs.
The highest power conversion efficiency in this thesis is PPB ( Jsc = 5.73mA / cm2, Voc = 590 mV, FF = 0.70, η = 2.36 % ). Through measure and TDDFT, displace the fluorine by 4-tert-butylcatechol and pyrocatechol will change the energy level of HOMO, and decrease the electron injection.
Fabricating solar cell devices is the crucial factor of power conversion efficient. By different way of adsorb, solvent, concentration, time and electrolyte will optimization the efficient.
關鍵字(中) ★ 染料敏化太陽能電池
★ BODIPY
★ D-π-A 共軛系統
關鍵字(英) ★ BODIPY
★ Donor-π-Acceptor conjugation system
★ Dye Sensitized Solar Cells
論文目次 摘要.......................................................i
Abstract..................................................ii
謝誌.....................................................iii
目錄......................................................iv
圖目錄....................................................vii
表目錄....................................................xii
第1章緒論...................................................1
1-1前言....................................................1
1-2太陽能電池的發展與種類......................................2
1-2-1矽基半導體型太陽能電池 ( Silicon type )...................4
1-2-2化合物半導體型太陽能電池 ( Compound type )................8
1-2-3有機材料型太陽能電池 (organic type).....................12
1-3太陽放射光譜圖...........................................19
1-4染料敏化太陽能電池的結構、工作原理與元件量測參數................22
1-4-1染料敏化太陽能電池結構...................................22
1-4-2染料敏化太陽能電池工作原理...............................27
1-4-3太陽能電池元件量測參數...................................31
1-5染料敏化劑..............................................36
1-5-1含金屬錯合物之有機染料 ( metal complex dye)..............39
1-5-2不含金屬有機染料 ( metal-free organic dye ).............44
1-6 BODIPY簡介............................................56
1-6-1 BODIPY在染料敏化太陽能電池上之應用.......................58
1-6-2 BODIPY在有機光伏電池上之應用............................72
1-7研究動機................................................77
第2章實驗..................................................79
2-1藥品...................................................79
2-2溶劑之前處理.............................................81
2-3實驗儀器................................................82
2-4合成流程 (scheme).......................................86
第3章結果與討論............................................109
3-1合成與討論.............................................109
3-2染料之光學測定..........................................110
3-2-1紫外-可見光吸收光譜及莫耳消光係數.........................111
3-2-2染料在二氧化鈦上之吸收光譜與吸附量........................126
3-3染料之電位測定..........................................131
3-3-1染料之電化學量測.......................................131
3-3-2 染料之低能量光電子光譜儀 ( Low-Energy Photoelecton Spectrometer )量測................137
3-4 DFT理論計算染料之HOMO / LUMO 能階.......................143
3-5元件與測量.............................................159
3-5-1浸泡時間與共吸附劑之元件最佳化...........................159
3-5-2浸泡溶劑之最佳化.......................................162
3-5-3 最佳化之元件與測量....................................163
第4章結論.................................................173
參考文獻..................................................174
附圖.....................................................184
參考文獻 1. Jaeger-Waldau, A., Photovoltaics and renewable energies in Europe. Renewable & Sustainable Energy Reviews 2007, 11 (7), 1414-1437.
2. 黃建昇, 工業材料雜誌, 2003, 11月, 150.
3. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W., Solar cell efficiency tables (version 37). Progress in Photovoltaics 2011, 19 (1), 84-92.
4. 太陽電池 總編輯:黃惠良、曾百亨
5. Guha, S.; Yang, J.; Williamson, D. L.; Lubianiker, Y.; Cohen, J. D.; Mahan, A. H., Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity. Applied Physics Letters 1999, 74 (13), 1860-1862.
6. http://www.solar-sse.com/cts.htm
7. http://www.moneydj.com/KMDJ
8. http://pvlab.ioffe.ru/about/single_junction_solar_cells.html
9. http://sharp-world.com/corporate/news/120531.html
10. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem Rev 2009, 109 (11), 5868-5923.
11. Forrest, S. R., The limits to organic photovoltaic cell efficiency. Mrs Bulletin 2005, 30 (1), 28-32.
12. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search-c/view_etd?URN=etd-0719106-233414
13. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., DYE SENSITIZED ZINC-OXIDE - AQUEOUS-ELECTROLYTE - PLATINUM PHOTOCELL. Nature 1976, 261 (5559), 402-403.
14. Oregan, B.; Gratzel, M., A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS. Nature 1991, 353 (6346), 737-740.
15. (a) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrybaker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M., CONVERSION OF LIGHT TO ELECTRICITY BY CIS-X2BIS(2,2’’-BIPYRIDYL-4,4’’-DICARBOXYLATE)RUTHENIUM(II) CHARGE-TRANSFER SENSITIZERS (X = CL-, BR-, I-, CN-, AND SCN-) ON NANOCRYSTALLINE TIO2 ELECTRODES. Journal of the American Chemical Society 1993, 115 (14), 6382-6390; (b) Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology a-Chemistry 2004, 164 (1-3), 3-14.
16. (a) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society 2001, 123 (8), 1613-1624; (b) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L., Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2006, 45 (24-28), L638-L640.
17. (a) Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Gratzel, M., A swift dye uptake procedure for dye sensitized solar cells. Chemical Communications 2003, (12), 1456-1457; (b) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Bessho, T.; Gratzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society 2005, 127 (48), 16835-16847.
18. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Graetzel, M., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334 (6056), 629-634.
19. http://www.worldscibooks.com/etextbook/p217/p217_chap08.pdf
20. Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
21. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395 (6702), 583-585.
22. Martinson, A. B. F.; Hamann, T. W.; Pellin, M. J.; Hupp, J. T., New architectures for dye-senstized solar cells. Chemistry-a European Journal 2008, 14 (15), 4458-4467.
23. Hoppe, H.; Sariciftci, N. S., Organic solar cells: An overview. Journal of Materials Research 2004, 19 (7), 1924-1945.
24. Campbell, W. M.; Burrell, A. K.; Officer, D. L.; Jolley, K. W., Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordination Chemistry Reviews 2004, 248 (13-14), 1363-1379.
25. 童永樑, 釕金屬染料在染料敏化太陽能電池的演進, 工業材料雜誌,2008, 255(3), 109.
26. (a) Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Gratzel, M.; Frank, A. J., Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: Shielding versus band-edge movement. Journal of Physical Chemistry B 2005, 109 (49), 23183-23189; (b) Zhang, Z.; Evans, N.; Zakeeruddin, S. M.; Humphry-Baker, R.; Graetzel, M., Effects of omega-guanidinoalkyl acids as coadsorbents in dye-sensitized solar cells. Journal of Physical Chemistry C 2007, 111 (1), 398-403; (c) Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Gratzel, M., Enhance the performance of dye-sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. Journal of Physical Chemistry B 2003, 107 (51), 14336-14341.
27. Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Gratzel, M., Molecular-scale interface engineering of TiO2 nanocrystals: Improving the efficiency and stability of dye-sensitized solar cells. Advanced Materials 2003, 15 (24), 2101-+.
28. Kuang, D. B.; Ito, S.; Wenger, B.; Klein, C.; Moser, J. E.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M., High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. Journal of the American Chemical Society 2006, 128 (12), 4146-4154.
29. Kuang, D.; Klein, C.; Ito, S.; Moser, J.-E.; Humphry-Baker, R.; Zakeeruddin, S. M.; Graetzel, M., High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells. Advanced Functional Materials 2007, 17 (1), 154-160.
30. Klein, C.; Nazeeruddin, M. K.; Liska, P.; Di Censo, D.; Hirata, N.; Palomares, E.; Durrant, J. R.; Gratzel, M., Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity. Inorganic Chemistry 2005, 44 (2), 178-180.
31. Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C., A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Angewandte Chemie-International Edition 2006, 45 (35), 5822-5825.
32. Chen, C.-Y.; Lu, H.-C.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C., New ruthenium complexes containing oligoalkylthiophene-substituted 1,10-phenanthroline for nanocrystalline dye-sensitized solar cells. Advanced Functional Materials 2007, 17 (1), 29-36.
33. Jiang, K. J.; Masaki, N.; Xia, J. B.; Noda, S.; Yanagida, S., A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells. Chemical Communications 2006, (23), 2460-2462.
34. Hara, K.; Tachibana, Y.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H., Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes. Solar Energy Materials and Solar Cells 2003, 77 (1), 89-103.
35. a) 葉素敏, 太陽電池之有機材料介紹(上), 工業材料雜誌 2007, 248(8), 162. b) 葉素敏, 太陽電池之有機材料介紹(下), 工業材料雜誌 2007, 249(9), 182.
36. Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa, H., A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chemical Communications 2001, (6), 569-570.
37. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New Journal of Chemistry 2003, 27 (5), 783-785.
38. Wang, Z.-S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K., Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid. Journal of Physical Chemistry C 2007, 111 (19), 7224-7230.
39. Wang, Z.-S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K., Molecular Design of Coumarin Dyes for Stable and Efficient Organic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C 2008, 112 (43), 17011-17017.
40. (a) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Arakawa, H., Novel conjugated organic dyes for efficient dye-sensitized solar cells. Advanced Functional Materials 2005, 15 (2), 246-252; (b) Hara, K.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Novel polyene dyes for highly efficient dye-sensitized solar cells. Chemical Communications 2003, (2), 252-253.
41. (a) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L., A novel organic chromophore for dye-sensitized nanostructured solar cells. Chemical Communications 2006, (21), 2245-2247; (b) Hagberg, D. P.; Yum, J.-H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Graetzel, M.; Nazeeruddin, M. K., Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. Journal of the American Chemical Society 2008, 130 (19), 6259-6266.
42. Tian, H.; Yang, X.; Chen, R.; Zhang, R.; Hagfeldt, A.; Sunt, L., Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes. Journal of Physical Chemistry C 2008, 112 (29), 11023-11033.
43. (a) Kim, C.; Choi, H.; Kim, S.; Baik, C.; Song, K.; Kang, M.-S.; Kang, S. O.; Ko, J., Molecular engineering of organic sensitizers containing p-phenylene vinylene unit for dye-sensitized solar cells. Journal of Organic Chemistry 2008, 73 (18), 7072-7079; (b) Kim, S.; Choi, H.; Baik, C.; Song, K.; Kang, S. O.; Ko, J., Synthesis of conjugated organic dyes containing alkyl substituted thiophene for solar cell. Tetrahedron 2007, 63 (46), 11436-11443.
44. Tanaka, K.; Takimiya, K.; Otsubo, T.; Kawabuchi, K.; Kajihara, S.; Harima, Y., Development and photovoltaic performance of oligothiophene-sensitized TiO2 solar cells. Chemistry Letters 2006, 35 (6), 592-593.
45. Tan, S. X.; Zhai, J.; Fang, H. J.; Jiu, T. G.; Ge, J.; Li, Y. L.; Jiang, L.; Zhu, D. B., Novel carboxylated oligothiophenes as sensitizers in photoelectric conversion systems. Chemistry-a European Journal 2005, 11 (21), 6272-6276.
46. Ooyama, Y.; Harima, Y., Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells. European Journal of Organic Chemistry 2009, (18), 2903-2934.
47. Koumura, N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K., Alkyl-functionalized organic dyes for efficient molecular photovoltaics. Journal of the American Chemical Society 2006, 128 (44), 14256-14257.
48. Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, M.-S.; Nazeeruddin, M. K.; Graetzel, M., Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. Angewandte Chemie-International Edition 2008, 47 (2), 327-330.
49. Kim, S.; Kim, D.; Choi, H.; Kang, M.-S.; Song, K.; Kang, S. O.; Ko, J., Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering. Chemical Communications 2008, (40), 4951-4953.
50. Liu, W.-H.; Wu, I. C.; Lai, C.-H.; Lai, C.-H.; Chou, P.-T.; Li, Y.-T.; Chen, C.-L.; Hsu, Y.-Y.; Chi, Y., Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chemical Communications 2008, (41), 5152-5154.
51. Thomas, K. R. J.; Hsu, Y.-C.; Lin, J. T.; Lee, K.-M.; Ho, K.-C.; Lai, C.-H.; Cheng, Y.-M.; Chou, P.-T., 2,3-disubstituted thiophene-based organic dyes for solar cells. Chemistry of Materials 2008, 20 (5), 1830-1840.
52. (a) Horiuchi, T.; Miura, H.; Uchida, S., Highly efficient metal-free organic dyes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology a-Chemistry 2004, 164 (1-3), 29-32; (b) Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S., High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society 2004, 126 (39), 12218-12219; (c) Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Horiuchi, T.; Miura, H.; Ito, S.; Uchida, S.; Gratzel, M., Organic dye for highly efficient solid-state dye-sensitized solar cells. Advanced Materials 2005, 17 (7), 813-+; (d) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Pechy, P.; Takata, M.; Miura, H.; Uchida, S.; Gratzel, M., High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Advanced Materials 2006, 18 (9), 1202-+.
53. Kuang, D.; Uchida, S.; Humphry-Baker, R.; Zakeeruddin, S. M.; Graetzel, M., Organic dye-sensitized ionic liquid based solar cells: Remarkable enhancement in performance through molecular design of indoline sensitizers. Angewandte Chemie-International Edition 2008, 47 (10), 1923-1927.
54. Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P., Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chemistry of Materials 2010, 22 (5), 1915-1925.
55. Karolin, J.; Johansson, L. B. A.; Strandberg, L.; Ny, T., FLUORESCENCE AND ABSORPTION SPECTROSCOPIC PROPERTIES OF DIPYRROMETHENEBORON DIFLUORIDE (BODIPY) DERIVATIVES IN LIQUIDS, LIPID-MEMBRANES, AND PROTEINS. Journal of the American Chemical Society 1994, 116 (17), 7801-7806.
56. (a) Xie, S.-X.; Petrache, G.; Schneider, E.; Ye, Q.-Z.; Bernhardt, G.; Seifert, R.; Buschauer, A., Synthesis and pharmacological characterization of novel fluorescent histamine H-2-receptor ligands derived from aminopotentidine. Bioorganic & medicinal chemistry letters 2006, 16 (15), 3886-3890; (b) Daly, C. J.; McGrath, J. C., Fluorescent ligands, antibodies, and proteins for the study of receptors. Pharmacology & Therapeutics 2003, 100 (2), 101-118.
57. (a) Coskun, A.; Akkaya, E. U., Ion sensing coupled to resonance energy transfer: A highly selective and sensitive ratiometric fluorescent chemosensor for Ag(I) by a modular approach. Journal of the American Chemical Society 2005, 127 (30), 10464-10465; (b) Zeng, L.; Miller, E. W.; Pralle, A.; Isacoff, E. Y.; Chang, C. J., A selective turn-on fluorescent sensor for imaging copper in living cells. Journal of the American Chemical Society 2006, 128 (1), 10-11.
58. Coskun, A.; Deniz, E.; Akkaya, E. U., Effective PET and ICT switching of boradiazaindacene emission: A unimolecular, emission-mode, molecular half-subtractor with reconfigurable logic gates. Organic letters 2005, 7 (23), 5187-5189.
59. (a) Golovkova, T. A.; Kozlov, D. V.; Neckers, D. C., Synthesis and properties of novel fluorescent switches. Journal of Organic Chemistry 2005, 70 (14), 5545-5549; (b) Trieflinger, C.; Rurack, K.; Daub, M., "Turn ON/OFF your LOV light": Boron-dipyrromethene-flavin dyads as biomimetic switches derived from the LOV domain. Angewandte Chemie-International Edition 2005, 44 (15), 2288-2291.
60. Ulrich, G.; Ziessel, R.; Harriman, A., The chemistry of fluorescent bodipy dyes: Versatility unsurpassed. Angewandte Chemie-International Edition 2008, 47 (7), 1184-1201.
61. (a) Arroyo, I. J.; Hu, R.; Merino, G.; Tang, B. Z.; Pena-Cabrera, E., The Smallest and One of the Brightest. Efficient Preparation and Optical Description of the Parent Borondipyrromethene System. Journal of Organic Chemistry 2009, 74 (15), 5719-5722; (b) Tram, K.; Yan, H.; Jenkins, H. A.; Vassiliev, S.; Brucec, D., The synthesis and crystal structure of unsubstituted 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY). Dyes and Pigments 2009, 82 (3), 392-395; (c) Schmitt, A.; Hinkeldey, B.; Wild, M.; Jung, G., Synthesis of the Core Compound of the BODIPY Dye Class: 4,4’’-Difluoro-4-bora-(3a,4a)-diaza-s-indacene. Journal of fluorescence 2009, 19 (4), 755-758.
62. Loudet, A.; Burgess, K., BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem Rev 2007, 107 (11), 4891-4932.
63. Bandichhor, R.; Thivierge, C.; Bhuvanesh, N. S. P.; Burgess, K., 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene. Acta Crystallographica Section E-Structure Reports Online 2006, 62, O4310-O4311.
64. (a) Van Patten, P. G.; Shreve, A. P.; Lindsey, J. S.; Donohoe, R. J., Energy-transfer modeling for the rational design of multiporphyrin light-harvesting arrays. Journal of Physical Chemistry B 1998, 102 (21), 4209-4216; (b) Li, F. R.; Yang, S. I.; Ciringh, Y. Z.; Seth, J.; Martin, C. H.; Singh, D. L.; Kim, D. H.; Birge, R. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S., Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments. Journal of the American Chemical Society 1998, 120 (39), 10001-10017; (c) Kumaresan, D.; Datta, A.; Ravikanth, A., Photophysical properties of boron-dipyrrin appended porphyrins with heteroatom cores. Chemical Physics Letters 2004, 395 (1-3), 87-91; (d) Wagner, R. W.; Lindsey, J. S.; Seth, J.; Palaniappan, V.; Bocian, D. F., Molecular optoelectronic gates. Journal of the American Chemical Society 1996, 118 (16), 3996-3997; (e) Lee, C. Y.; Hupp, J. T., Dye Sensitized Solar Cells: TiO2 Sensitization with a Bodipy-Porphyrin Antenna System. Langmuir 2010, 26 (5), 3760-3765.
65. Imahori, H.; Norieda, H.; Yamada, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y.; Fukuzumi, S., Light-harvesting and photocurrent generation by cold electrodes modified with mixed self-assembled monolayers of boron-dipyrrin and ferrocene-porphyrin-fullerene triad. Journal of the American Chemical Society 2001, 123 (1), 100-110.
66. Hattori, S.; Ohkubo, K.; Urano, Y.; Sunahara, H.; Nagano, T.; Wada, Y.; Tkachenko, N. V.; Lemmetyinen, H.; Fukuzumi, S., Charge separation in a nonfluorescent donor-acceptor dyad derived from boron dipyrromethene dye, leading to photocurrent generation. Journal of Physical Chemistry B 2005, 109 (32), 15368-15375.
67. Gabe, Y.; Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T., Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe. Journal of the American Chemical Society 2004, 126 (10), 3357-3367.
68. Erten-Ela, S.; Yilmaz, M. D.; Icli, B.; Dede, Y.; Icli, S.; Akkaya, E. U., A panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells. Organic letters 2008, 10 (15), 3299-3302.
69. Kolemen, S.; Cakmak, Y.; Erten-Ela, S.; Altay, Y.; Brendel, J.; Thelakkat, M.; Akkaya, E. U., Solid-State Dye-Sensitized Solar Cells Using Red and Near-IR Absorbing Bodipy Sensitizers. Organic letters 2010, 12 (17), 3812-3815.
70. Kolemen, S.; Bozdemir, O. A.; Cakmak, Y.; Barin, G.; Erten-Ela, S.; Marszalek, M.; Yum, J.-H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Graetzel, M.; Akkaya, E. U., Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells. Chemical Science 2011, 2 (5), 949-954.
71. http://www.uni-leipzig.de/poc/
72. (a) Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali, J., BODIPY derivatives as donor materials for bulk heterojunction solar cells. Chemical Communications 2009, (13), 1673-1675; (b) Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali, J., Multi-donor molecular bulk heterojunction solar cells: improving conversion efficiency by synergistic dye combinations. Journal of Materials Chemistry 2009, 19 (16), 2298-2300.
73. Kumaresan, D.; Thummel, R. P.; Bura, T.; Ulrich, G.; Ziessel, R., Color Tuning in New Metal-Free Organic Sensitizers (Bodipys) for Dye-Sensitized Solar Cells. Chemistry-a European Journal 2009, 15 (26), 6335-6339.
74. Wang, J.-B.; Fang, X.-Q.; Pan, X.; Dai, S.-Y.; Song, Q.-H., New 2, 6-Modified Bodipy Sensitizers for Dye-Sensitized Solar Cells. Chemistry-an Asian Journal 2012, 7 (4), 696-700.
75. Mao, M.; Wang, J.-B.; Xiao, Z.-F.; Dai, S.-Y.; Song, Q.-H., New 2,6-modified BODIPY sensitizers for dye-sensitized solar cells. Dyes and Pigments 2012, 94 (2), 224-232.
76. Rousseau, T.; Cravino, A.; Ripaud, E.; Leriche, P.; Rihn, S.; De Nicola, A.; Ziessel, R.; Roncali, J., A tailored hybrid BODIPY-oligothiophene donor for molecular bulk heterojunction solar cells with improved performances. Chemical Communications 2010, 46 (28), 5082-5084.
77. Chi, C.-C.; Huang, Y.-J.; Chen, C.-T., Synthesis and Spectroscopic Characterization of Dual Absorption BODIPY Type Dyes and their Light Harvesting Application in Polymer-Based Bulk Hetrojunction Organic Photovoltaics. Journal of the Chinese Chemical Society 2012, 59 (3), 305-316.
78. Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Graetzel, C.; Nazeeruddin, M. K.; Graetzel, M., Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 2008, 516 (14), 4613-4619.
79. (a) Huang, S.-T.; Hsu, Y.-C.; Yen, Y.-S.; Chou, H. H.; Lin, J. T.; Chang, C.-W.; Hsu, C.-P.; Tsai, C.; Yin, D.-J., Organic Dyes Containing a Cyanovinyl Entity in the Spacer for Solar Cells Applications. Journal of Physical Chemistry C 2008, 112 (49), 19739-19747; (b) Mo, Y.; Bai, M., Preparation and adhesion of a dual-component self-assembled dual-layer film on silicon by a dip-coating nanoparticles method. Journal of Physical Chemistry C 2008, 112 (30), 11257-11264.
80. Jones, G.; Jackson, W. R.; Choi, C.; Bergmark, W. R., SOLVENT EFFECTS ON EMISSION YIELD AND LIFETIME FOR COUMARIN LASER-DYES - REQUIREMENTS FOR A ROTATORY DECAY MECHANISM. Journal of Physical Chemistry 1985, 89 (2), 294-300.
81. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Gratzel, M., A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. Journal of Physical Chemistry B 2003, 107 (48), 13280-13285.
82. www.rkiinstruments.com/pdf/ac2.pps
指導教授 陳錦地、吳春桂
(Chin-Ti Chen、Chun-Guey Wu)
審核日期 2012-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明