博碩士論文 982203026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.231.228.109
姓名 楊和蓉(He-Rong Yang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 N2O在60-120nm之吸收光譜、光游離與螢光激發光譜
(the absorption and fluorescence excitation spectrum of N2O in the 60-130 nm wavelength region)
相關論文
★ 氧氣在105-190nm間高激發態之光譜研究★ H2O光解產生OH(A2Σ+)振動態之研究
★ 氮氣光譜之研究Ⅰ:C3Πu-X1Σg+及a1Πg- X1Σg+系統★ 丙炔與丙二烯吸收光譜之研究
★ O2(b1Sg+)氣輝的全球分布與變化★ 以雷射雷達量測對流層頂之溫度、高度分布 -與無線電探空儀量測資料之比較、分析
★ 氮氣光譜之研究Ⅱ: C3Πu-X1Σg+及a1Πg- X1Σg+系統★ 一氧化氮激態的消光及螢光激發光譜之研究
★ 一氧化氮激態D2Σ+螢光之消激研究★ 一氧化氮激態A2Σ+螢光之消激研究
★ 中壢上空10–30公里間的卷雲、氣膠、溫度的測量與光散射性質之研究★ 低對流層氣膠之光達量測
★ 對流層氣膠光學性質之研究★ 氮氣分子在45-100 nm之光吸收、光離子化、光解離
★ 利用光達技術探測氣膠與水汽之作用★ 利用地面與空載光達進行熱帶高空卷雲之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本實驗利用新竹同步輻射中心(NSRRC)穩定的同步輻射光源(SR) 測量N2O在 60-130nm 波長範圍的吸收以及螢光激發光譜。Seya光束線(4B1解析度: 0.015-0.13 nm))是用來測量吸收光譜(ABS),另外使用High-Flux(3A1,解析度: 0.04-0.075nm))研究螢光激發光譜(FES) 。螢光訊號是因為N2O被電離或光解後的激發態所產生的。兩隻光電管,分別收集由N2O+( 2Σ+, 2Π, 2Π+)及其他中性分子激發後所產生在175-320 nm (Hamamatsu R1460) 及180-650 nm (EMI 9789QB)的螢光輻射訊號。
吸收光譜(ABS)在100-130 nm方面,本實驗吸收數值與Shaw23等(1992)做比較,吸收值略為高一些。 在69-100 nm方面,本實驗與Shaw23等(1992)有類似的結果,但在吸收截面積方面有些微差異(本實驗小約10-20%)。在60-96nm範圍內吸收光譜存在幾個雷德堡態系列的吸收,分別為收斂至 2Π(2π-1,12.886eV; 96.2 nm), 2Σ+(7σ-1, 16.388eV, 75.64 nm ), 2Π(1π-1,17.65 eV, 70.24 nm ), 2Π+ (7σ-1,20.105eV, 61.66 nm)。
螢光部份份為三部份探討:
(1)在入射波長74-80nm的範圍,螢光激發光譜主要為收斂至N2O+ 2Σ+雷德堡態,與Ukai24等(1994)的 FES 結果類似,螢光主要貢獻來自ndπ和nsσ 雷德堡系列。由於N2O+ 2Σ+在300-420nm皆會放射螢光,FES是由非雷德堡態N2O+( 2Σ+→ 2Π)所產生的螢光,N2O+ ( 2Σ+→ 2Π1/2)的振動模式為(0,0,0) →(0,0,0)與(1,0,0) →(0,0,0)皆有明顯的躍遷,波長位置分別為355.85與339.55nm。(2).而在入射波長69-75nm區間,FES為雷德堡態收斂至N2O+ 2Π,光譜有明顯的vibrational progression結構,且隨著波長變小而強度減弱,另外N2O+ ( 2Σ+→ 2Π1/2)的螢光激發光譜,在此區同樣有vibrational progression結構,但不隨波長變化而變化。(3) 在入射波長60-69nm間,FES主要為收斂至N2O+ 2Π+的ndπ和nsσ系列雷德堡態,但是在本區域中npπ系列,呈現窗口共振(window resonance)式結構,它們是直接自游離所造成。在N2O+( 2Σ+→ 2Π)螢光激發光譜當中,結果類似Lee 16(1977),且我們的光譜解析(0.04nm)度比Lee16所量測光譜還要好。
摘要(英) abstract
In this experiment, we have employed synchrotron radiation of NSRRC as the light source to study the absorption and fluorescence excitation of N2O in the 60-130 nm wavelength region. The beam line SEYA (4B1) with a resolution of 0.015-0.13 nm and the High Flux (3A1) with a resolution of 0.04-0.075nm have been used for measuring the absorption(ABS) and fluorescence excitation spectra (FES) experiments. Fluorescence signals were measured by using two photomultiplier tubes (EMI 9789QB, Hamamatsu R1460 for emissions produced by the excited states N2O+( 2Σ+, 2Π, 2Π+) and other neutral emissions.
In the wavelength region 100-130 nm, our experimental results are compared with Shaw23. In 69-100 nm , our absorption spectrum are generally agreeable with the the spectra of Shaw et al23 (1992)with small difference in the absolute cross sections. In 60-96 nm, absorption spectrum are assigned to a few Rydeberg states convering to 2Π(2π-1, 12.886eV), 2Σ+(7σ-1,16.388eV), 2Π(1π-1,17.65 eV), 2Π+ (7σ-1,20.105eV).
The FES experiments are discussed in three wavelength regions as follows:
(1) In 74-80 nm, FES are produced by Rydberg states converging to N2O+ 2Σ+ which are comparable to previous works of Ukai et al.24(1992). In this wavelength region fluorescence produced in 175-320 nm are mainly contributed by Rydberg states ndπ and nsσ converging to N2O+( 2Σ) . Between 300-420 nm, there are vibrational levels (0,0,0) and (1,0,0) of the N2O+ 2Σ+ excited states.
(2) In the wavelength region 69-75 nm, FES are mainly produced by vibrational levels of the excited states N2O+( 2Π) and weakly of N2O+( ). The intensity of N2O+( 2Π) decreases while shorter wavelength irradiation, but intensity of N2O+( ) is independent with wavelength.
(3) In 60-69 nm, there are mainly ndπ and nsσ series converging to N2O+ 2Π+ with FES also contributed by N2O+( 2Σ+→ 2Π) showing window resonances observed for npπ series. Our results are compared with Lee et al.16 (1977) but with better resolution.
關鍵字(中) ★ 吸收光譜
★ 螢光激發光譜
★ 一氧化二氮
關鍵字(英) ★ fluorescence
★ FES
★ photoionization
★ photoabsorption
★ N2O
論文目次 目錄
摘要 I
abstract II
誌謝 II
第一章 緒論 1
1-1. N2O分子在大氣中的循環與含量 1
1-2 N2O破壞臭氧反應過程 2
1-3 N2O線性分子討論與其軌域形狀 5
第二章 原理 9
2-1 N2O的游離能階 9
2-2 N2O吸收光譜 9
2-2-1 N2O 吸收光譜96-130nm 10
2-2-2 N2O 60-120nm的吸收光譜 13
2-2-3.N2O 61.5-71nm的吸收光譜 16
2-3N2O螢光激發光譜 17
2-3-1 分子衰退機制 17
2-3-2 螢光激發光譜60-85nm 19
第三章 實驗部分 30
3-1 光源系統 30
3-2 實驗架設 32
3-3偵測系統 34
第四章 實驗結果與分析 37
4-1.一氧化二氮吸收光譜 37
4-2. 光源背景值 37
4-3. N2O吸收光譜 39
4-3-1.N2O 100-130nm 39
4-3-2 N2O 97-107nm 41
4-3-3. N2O 80-97nm 43
4-3-4. N2O 60-70nm吸收光譜 44
4-4. 在High-Flux 光束線所取的N2O光譜原始數據圖 46
4-5. 在High-Flux 光束線所取的N2O的螢光激發光譜FES與N2O+(A2Σ+→X2Π) 螢光產率 51
4-5-1. N2O 74-80nm(FES) 51
4-5-2. N2O 74-80nm (N2O+( 2Σ+→ 2Π) 52
4-5-3. N2O 69 - 75nm(FES) 54
4-5-5 . N2O 61-68nm(FES) 55
4-5-6. 61-68nm[N2O+(A2Σ+→X2Π)] 56
第五章 結論 58
Reference 60
附錄 66
3m分光儀實驗: 67
參考文獻 Reference
[1].Nevison CD, Esser G & Holland EA, “A Global Model of Changing N2O Emissions from Natural and Perturbed Soils” ,Climatic Change , Volume: 32, Issue: 3,pp 327–378 ,1996
[2]. Arvin Mosier, Carolien Kroeze, Cindy Nevison, Oene Oenema, Sybil Seitzinger, Oswald Van Cleemput, Nutrient Cycling in Agroecosystems, “ Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle” , Volume: 52, Issue: 2, Pages: 225-248,doi: 10.1023/A:1009740530221, 1998
[3]. T. Machida, T. Nakazawa, Y. Fujii, S. Aoki, and O. Watanabe , “ Increase in the atmospheric nitrous oxide concentration during the last 250 years”, Geophys. Res. Lett., vol. 22, pp. 2921-2924, doi:10.1029/95GL02822, 1995
[4]. B. D. Hall, G. S. Dutton, and J. W. Elkins, “The NOAA nitrous oxide standard scale for atmospheric observations”, J. Geophys. Res., Vol. 112, pp. D09305, doi:10.1029/2006JD007954, 2007
[5] A. R. Ravishankara, “Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century”, Science Vol. 326 no. 5949 pp. 123-125 ,doi: 10.1126/science.1176985 , October 2009
[6]. D. R. Bates and P. B. Hays, “Atmospheric nitrous oxide” , Planetary and Space Science, Vol. 15, issue 1 , pp.189-197, January 1967
[7]. Hampson, R. F., Jr.; Okabe, H., “Collisional Stimulation of the O(1S)-O(1D) Emission of Oxygen Atoms Formed in Vacuum-Ultraviolet Photolysis of Nitrous Oxide” , Journal of Chemical Physics, Vol. 52,issue 4, p.1930-1933,doi: 10.1063/1.1673236, 1970
[8]. E. C. Zipf, S. S. Prasad, “Experimental evidence that excited ozone is a source of nitrous oxide” , Geophysical research letters, vol. 25, no. 23, pp.4333-4336, December 1998
[9]. C.N.Banwell, fundamentals of molecular spectroscopy, McGRAW-HILL Book Company, ISBN:0-07-084139-X, 1982
[10]. J. Berkowitz and J.H.D. Eland, “Photoionization of N2O: Mechanisms of photoionization and ion dissociation”, J. Chem. Phys.,vol. 67, issue 6,pp.2740, doi:10.1063/1.435188, 1977
[11]. G. R. Cook, P. H. Metzger, and M. Ogawat ,"Photoionization and Absorption Coefficients of N2O," J. Opt. Soc. Am. ,vol.58, Issue 1, pp. 129-136, doi:10.1364/JOSA.58.000129, 1968
[12]. L.C. Lee, R.W. Carlson, D.L. Judge, M. Ogawa, “The absorption cross sections of N2, O2, CO, NO, CO2, N2O, CH4, C2H4, C2H6 and C4H10 from 180 to 700Å”, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 13, Issue 10, pp.1023-1031, doi:10.1016/0022-4073(73)90075-7, October 1973
[13]. J. L. Bahr, A. J. Blake, J. H. Carver, J. L. Gardner† and Vijay Kumar, “Photoelectron spectra and partial photoionization cross sections for NO, N2O, CO, CO2 and NH3”,Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 12, Issue 1, pp.59-73, doi:10.1016/0022-4073(72)90005-2, January 1972
[14]. A. B. F. Duncan, “The Far Ultraviolet Absorption Spectrum of N2O”, Journal of Chemical Physics,Vol.4, Issue 10,pp.638, doi:10.1063/1.1749760 , July 1936
[15]. K. Watanabe, “Ionization Potentials of Some Molecules”, Journal of Chemical Physics, Vol. 26, Issue 3, pp. 542; doi:10.1063/1.1743340, 1957
[16]. Murray Zelikoff, K. Watanabe, and Edward C. Y. Inn, “Absorption Coefficients of Gases in the Vacuum Ultraviolet. Part II. Nitrous Oxide ” , Journal of Chemical Physics, Vol. 21, Issue 10, pp.1643, doi:10.1063/1.1698636, 1953
[17]. Edwin N. Lassettre, Ausma Skerbele, Michael A. Dillon, and Kevin J. Ross
, “High‐Resolution Study of Electron‐Impact Spectra at Kinetic Energies between 33 and 100 eV and Scattering Angles to 16°”, Journal of Chemical Physics, Vol. 48, Issue 11, pp.5066, doi:10.1063/1.1668178, August 1968
[18]. Michael G. Szarka and Stephen C. Wallace, “Spectroscopy and photodissociation of Rydberg states of N2O”, Journal of Chemical Physics, Vol. 95, pp. 2336-2351, Aug. 1991
[19].BE. Patsilinakou, R. T. Wiedmann, C. Fotakis, and E. R. Grant, “Jet‐resolved vibronic structure in the higher excited states of N2O: Ultraviolet three‐photon absorption spectroscopy from 80 000 to 90 000 cm−1” , Journal of Chemical Physics, Vol. 91, Issue 7,pp. 3916 , doi:10.1063/1.456823, 1989
[20]. C. R. Scheper, J. Kuijt, W. J. Buma, and C. A. de Lange, “Resonance-enhanced multiphoton ionization photoelectron spectroscopy of Rydberg states of N2O below the X 2Π ionization limit”, Journal of Chemical Physics, Vol. 109, Issue 18, pp. 7844, doi:10.1063/1.477431, August 1998
[21].G. Herzberg, Molecular Spectra and Molecular Structure: Electronic Spectra and Electronic Structure of Polyatomic Molecules ,Van Nostrand Reinhold, New York, 1996
[22]. Y. Tanaka, A. S. Jursa, and F. J. LeBlanc, “Higher Ionization Potentials of Linear Triatomic Molecules. II. CS2, COS, and N2O”, Journal of Chemical Physics, Vol. 32, Issue 4,pp. 1205, doi:10.1063/1.1730875 , April 1960
[23].D.A. Shaw, D.M.P. Holland, M.A. MacDonald, A. Hopkirk, M.A. Hayes and S.M. McSweeney, “A study of the absolute photoabsorption cross section and the photionization quantum efficiency of nitrogen from the ionization threshold to 485 Å ”,Chemrcal Physics, Vol. 166, Issue 3, pp. 379-391, doi:10.1016/0301-0104(92)80097-F, October 1992,
[24]. Ukai, Masatoshi; Kameta, Kosei; Machida, Shuntaro; Kouchi, Noriyuki; Hatano, Yoshihiko; Tanaka, Kenichiro, “Extreme-ultraviolet photodissociation of N2O in superexcited states”, Journal of Chemical Physics, Vol. 101, Issue 7, pp.5473-5483, doi: 10.1063/1.467336, October 1994
[25]. Carlson, T. A.; Svensson, W. A.; Krause, M. O.; Whitley, T. A.; Grimm, F. A., “Autoionization in N2O as measured by angle-resolved photoelectron spectroscopy” , Journal of Chemical Physics, vol. 83, p. 3738-3743. Doi:10.1063/1.449135, Oct. 1985
[26]. Paul M. Guyon, Tomas Baer, and Irene Nenner,“Interactions between neutral dissociation and ionization continua in N2O” ,Journal of Chemical Physics, Vol. 78,pp. 3665-3672., doi:10.1063/1.445141, March 1983
[27]. M. J. McEwan, G. M. Lawrence, and H. M. Poland, “Vacuum uv photolysis of N2O ”,J. Chem. Phys.,Vol.61, pp.2857 , doi:10.1063/1.1682423 ,1974
[28]. A. A. Cafolla, T. J. Reddish, and J. Comer, “Atomic autoionisation following neutral photodissociation of O2”, J. Phys. B: At. Mol. Opt. Phys., Vol.22, pp.L273-L278, doi: 10.1088/0953-4075/22/11/002, 1989
[29]. A. A. Willis, A. A. Cafolla, and J. Comer, “The production of autoionizing states of atomic oxygen by the photodissociation of O2”, J. Phys. B: At. Mol. Opt. Phys. , Vol. 24,pp. 3989 , doi: 10.1088/0953-4075/24/18/013, 1991
[30]. E. D. Poliakoff, Ming‐Hang Ho, G. E. Leroi, and M. G. White, “Constant ionic state spectroscopy of N2O. Dispersed fluorescence as a probe of molecular autoionization”, J. Chem. Phys., Vol. 85, Issue 10,pp. 5529,doi:10.1063/1.451565, 1986
[31]. Masatoshi Ukai, Kosei Kameta, Noriyuki Kouchi, Kazunori Nagano, Yoshihiko Hatano, and Kenichiro Tanaka, “Autoionizing‐resonance enhanced preferential photodissociation of CO2 in superexcited states ” J. Chern. Phys. , Vol. 97,pp. 2835, doi:10.1063/1.463026, 1992
[32]. J. H. D. Eland, J. Berkowitz, and J. E. Monahan, “Resonance peak shapes in molecular photoionization mass spectroscopy”, J.Chern.Phys., Vol.72, pp.253 , doi:10.1063/1.438884 , 1980
[33]. Tomas Baer, Paul‐Marie Guyon, Irene Nenner, Abdallah Tabché‐Fouhaillé, René Botter, Luis F. A. Ferreira, and Thomas R. Govers “Non‐Franck–Condon transitions in resonant autoionization of N2O” , J. Chern. Phys.,Vol. 70,pp. 1585 ,Issue 4, doi:10.1063/1.437697 , 1979
[34]. Irene Nenner, Paul‐Marie Guyon, Tomas Baer, and Thomas R. Govers
, “A threshold photoelectron–photoion coincidence study of the N2O+ dissociation between 15 and 20.5 eV”, J. Chem. Phys., Vol. 72, Isuue 12, pp. 6587, doi:10.1063/1.439115, 1980
[35]. E. Lindholm, Ark. Fys.Vol. 40,pp. 129, 1969
[36].L C Lee and D L Judge, “Cross sections and band strengths for the N2O+(A2Σ + to X2Π) system produced by vacuum ultraviolet radiation”, J. Phys. B: At. Mol. Phys. ,Vol.7, pp. 626 doi: 10.1088/0022-3700/7/5/013 , 1974
[37].L. C. Lee ,“Cross sections for the production of the N2+ (B→X), CO+ (B→X) and N2O+ (A→X) fluorescence by photoionisation”, J. Phys. B: Atom. Molec. Phys., Vol. 10, pp. 3033, doi: 10.1088/0022-3700/10/15/014, 1977
[38]. K. Monahan and T. Wauchop, “Cross Sections for the Production of Excited Products in the Photoionization of N2, O2, CO, and N2O by 58.4‐nm Radiation”,
J.Geophys. Res., Vol. 77, pp.31, doi:10.1029/JA077i031p06262, 1972
[39]. Claudina Cossart-Magos, Martin Jungen, and Françoise Launay, “High resolution absorption spectrum of N2O between 75 000 and 104 000 cm−1”, Journal of Chemical Physics, Vol. 114, Issue 17,pp. 7368, doi:10.1063/1.1363671 ,2001
[40]. D A Shaw and D M P Holland, “The influence of Rydberg states on the
photodissociation of nitrous oxide”, J. Phys. B: At. Mol. Opt. Phys.,Vol. 41, pp.145103, doi:10.1088/0953-4075/41/14/145103, 2008)
[41]. D. G. Hopper , “Ab initio study of N2O+. Angular dependence of the 14A″(4Π) potential”, Chemical Physics Letters , Vol.31, Issue 3, pp.446-450, doi:10.1016/0009-2614(75)85061-5,March 1975
[42]. Darrel G. Hopper , , “Ab initio multiple root optimization MCSCF study of the C∞v/Cs excitation spectra and potential energy surfaces of N2O” , Journal of Chemical Physics, Vol. 80, Issue 9, pp. 4290, doi:10.1063/1.447260, 1984
[43]. Nee, J. B.; Yang, J. C.; Lee, P. C.; Wang, X. Y.; Kuo, C. T., “Photoabsorption Cross Sections of N2O in 100-220 nm”, Chinese Journal of Physics, vol. 37, Issue 2, p.172, 1999
[44]NSRRC,新竹同步輻射中心所提供資料
[45]. W. F. Chan, G. Cooper and C. E. Brion, “Discrete and continuum photoabsorption
oscillator strengths for the electronic spectrum of nitrous oxide (5.5–203 eV)”,
Chemical Physics, Vol. 180, Issue 1, p.p. 77-88, doi:10.1016/0301-0104(93)E0386-A , 1994
[46] D.A. Shaw, D.M.P. Holland, “The effect of electronic autoionisation on the N2O N2O+ 2Σ+ state vibrational populations”, Chemical Physics, Vol. 352, p.p. 217–223, 2008
指導教授 倪簡白(J. B. Nee) 審核日期 2011-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明