博碩士論文 982203030 詳細資訊


姓名 侯官廷(Hou Guan-ting)  查詢紙本館藏   畢業系所 化學學系
論文名稱 磺酸二氧化鈦奈米管Nafion複合質子交換膜及燃料電池應用
(Sulfonated TiO2 Nanotube / Nafion composite membrane for High Temperature Proton Exchange Membrane Fuel Cell (PEMFC))
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 相較於其他質子交換膜材料,Nafion有較優秀的穩定性及導電度,然而Nafion在高溫操作環境下水分散失嚴重造成質子傳導困難,使導電度下降。在高分子質子交換膜中摻合無機奈米物質可以增加高溫下的保水性質,在高溫下可維持高導電度甚至在低濕度的環境中能夠提升電池效能,比使用純Nafion做為交換膜的燃料電池更優秀。本研究中的新穎燃料電池交換膜是在Nafion中加入了具管狀結構的親水性二氧化鈦奈米管,並在奈米管表面以1,3-propane sultone修飾上磺酸官能基。修飾後的奈米管IEC為1.4 mmol/g。奈米管與Nafion混合形成有機/無機複合薄膜,該無機添加物具有的高保水性質及一維長距離連續性親水性界面可有效改善Nafion在高溫低濕使用下的缺點。
特別的是本研究在無機物表面修飾磺酸官能基,解決傳統方法的有機/無機複合薄膜有混合不均及相分離的問題。此外,由於酸根的親水性,與高分子上的磺酸根產生交互作用,使水分子在有機高分子及無機物間產生較強的作用力,提高薄膜在高溫下的保水能力使導電度升高。本研究由DSC實驗觀察到sTNT具有延緩水分子散失的現象,保水能力比磺酸化TiO2顆粒更佳。從TEM、SAXS及XRD等測量中觀察到sTNT穿透於數個Nafion離子集團的空間分佈造成薄膜結晶相的改變。此現象除了增加長距離質子導電度外,對薄膜的含水量及抗滲透性也造成直接的影響。實驗中以5wt % sTNT含量的sTNT / Nafion複合薄膜呈現最佳的相容性及質子導電度。在100℃、40 %相對溼度環境下5wt% sTNT複合薄膜具有接近10-2 S/cm 的導電度為純Nafion薄膜的兩倍以上。製作成MEA後的DMFC效能在60℃、70℃的效能達50 mW/cm2比未添加sTNT的純Nafion薄膜效能40 mW/cm2還要好。本研究顯示,以sTNT改良後的Nafion薄膜產生了不同的微結構型態,改變了薄膜內的水分子脫附及運動的行為,進而影響質子導電度及電池效率。
摘要(英) Nafion has more excellent stability and conductivity in comparison to other materials. However, Nafion shows severe loss of water and reduced proton conductivity under high temperature operating conditions. Proton exchange membrane prepared by inorganic nanomaterials composite can increase water retention at high temperatures. These composite membranes can maintain high conductivity at high temperatures and even enhances cell performance at low humidity condition. In this study, a novel organic/inorganic composite proton conducting membrane were prepared by blending Nafion with sulfonate functionalized Titania nanotube,and applied to PEMFC operating at high temperatures. Sulfonat functionalized titania nanotubes (sTNT) resolves the draw-backs of of phase separation commonly occured in organic/inorganic composite meterials. In addition, composite membran exhibit good water retention behavior at high temperatures because the high surface interaction with of sTNT. Furthermore, composite with sTNT created a highly efficient proton conducting channels, forming a continuous and long-range proton transfer behavior existed between the organic and inorganic interface which yield favorable proton conductivity at high temperature and low humidity.
From TEM measurement, we observed these sTNT which cross through many ionic clusters in these composite membranes. And we also found that presence of sTNT changed the crystallinity of the membranes by XRD. This phenomenon has a direct effect in water uptake and permeability, in addition to facilitate long-range proton conductivity, The sTNT showed a much better water retention and conductivity than titania nanoparticle by DSC. The study shows 5wt% of sTNT yielded the most balanced performance of ion conductivity and water uptake property. At 100℃ and 40% relative humidity, the proton conductivity of the 5wt% sTNT composite membrane is 8 mS/cm, a great improvement over 2 mS/cm for a recast Nafion membrane. DMFC performance for this composite membrane is 50 mW/cm2 better than 40 mW/cm2 with pure Nafion at 70℃. The study shows the composite membrane formed from the addition of sTNT, created different types of membrane morphology and nano-structures which affected water ad-/desorption and proton conducting behavior. A strategy to improve fuel cell performance can be established by improving these membrane morphology and nano-structures.
關鍵字(中) ★ 磺酸二氧化鈦奈米管
★ 質子交換膜
★ 燃料電池
★ Nafion
關鍵字(英) ★ PEMFC
★ Nafion
★ sulfonated TiO2 nanotube
論文目次 目錄 頁次
中文摘要…………………………………………………………………………i
英文摘要…………………………………………………………………………ii
謝誌…………………………………………………………………………………iv
目錄……………………………………………………………………………………v
表目錄…………………………………………………………………………viii
圖目錄………………………………………………………………………………ix
第一章 緒論………………………………………………………………………1
1-1 前言…………………………………………………………………1
1-2 燃料電池原理及其組成………………………………2
1-3 研究動機…………………………………………………………4
第二章 文獻回顧………………………………………………………………6
2-1 燃料電池質子交換膜介紹……………………………6
2-2 Nafion薄膜改良…………………………………………11
2-2-1 Nafion/小分子化合物複合薄膜…12
2-2-2 Nafion/無機物複合薄膜………………13
2-3 非PFSA系列薄膜…………………………………………21
2-3-1 碳氫(芳香環)高分子薄膜………………21
2-3-2 酸鹼複合高分子薄膜…………………………27
第三章 實驗方法與原理…………………………………………………30
3-1 實驗儀器及技術原理……………………………………30
3-1-1傅立葉式紅外線吸收光譜儀磁共振光譜儀
……………………………………………………………………30
3-1-2 熱重分析儀(Thermal Gravimetric Analysis, TGA)
……………………………………………………………………30
3-1-3 示差掃描熱卡計(Differential Scanning Calorimeter, DSC)
……………………………………………………………………31
3-1-4 X光繞射分析(X-ray Diffraction,XRD)
……………………………………………………………………31
3-1-5 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)
……………………………………………………………………32
3-1-6 NMR變溫擴散實驗(VT-diffsion)
……………………………………………………………………32
3-1-7 薄膜吸水量(Water uptake)與膨潤(Swelling)
……………………………………………………………………32
3-1-8 離子交換容積(Ion exchange Capacity,IEC)
……………………………………………………………………33
3-1-9 甲醇滲透率(Methanol Permeability)
……………………………………………………………………34
3-1-10 質子導電度(Proton conductivity)
……………………………………………………………………35
3-1-11 DMFC單電池效能測試…………………………………37
3-2 物質合成及薄膜製備…………………………………………………38
3-2-1 合成Titanate Nanotube………………38
3-2-2 奈米管表面磺酸化修飾…………………………38
3-2-3 Nafion solution製備……………………39
3-2-4 sTNT/Nafion複合薄膜製備………………39
3-2-5 Nafion 117前處理………………………………39
3-2-6 薄膜TEM觀察前處理………………………………39
3-3 實驗藥品………………………………………………………………40
3-4 樣品命名規則………………………………………………………42
第四章 結果與討論………………………………………………………………43
4-1 磺酸化二氧化鈦奈米管………………………………………44
4-1-1 FT-IR表面官能基鑑定……………………………44
4-1-2 X光繞射分析………………………………………………45
4-1-3 TEM&SEM微結構鑑定 ……………………………46
4-1-4 DSC保水性質分析……………………………………48
4-2 sTNT/Nafion複合膜性質與效能分析…………49
4-2-1 不同溶劑影響………………………………………………49
含水量、尺寸膨潤、質子導電度及甲醇滲透綜合比較
………………………………………………………………………50
XRD薄膜結晶程度比較…………………………………55
SAXS小角度散射微結構分析………………………57
薄膜變濕導電度測試………………………………………58
甲醇滲透……………………………………………………………59
4-2-2 不同sTNT含量之影響…………………………………60
穿透式電子顯微鏡TEM……………………………………61
TGA&DSC熱穩定性比較…………………………………63
XRD薄膜結晶程度比較……………………………………66
SAXS小角度散射微結構分析…………………………68
保水能力分析………………………………………………………69
NMR水分子擴散速率比較…………………………………73
質子導電度比較…………………………………………………74
甲醇滲透………………………………………………………………78
DMFC單電池效能測試………………………………………79
第五章 結論與未來展望………………………………………………………………82
第六章 參考文獻……………………………………………………………………………85
參考文獻 [1] W. H. J. Hogarth, et al., "Solid acid membranes for high temperature (¿ C) proton exchange membrane fuel cells," Journal of Power Sources, vol. 142, pp. 223-237, 2005.
[2] B. Smitha, et al., "Solid polymer electrolyte membranes for fuel cell applications--a review," Journal of Membrane Science, vol. 259, pp. 10-26, 2005.
[3] H. G. Haubold, et al., "Nano structure of NAFION: a SAXS study," Electrochimica Acta, vol. 46, pp. 1559-1563, 2001.
[4] X. Duan and S. Scheiner, "Analytic functions fit to proton transfer potentials," Journal of Molecular Structure, vol. 270, pp. 173-185, 1992.
[5] N. Laurs and P. Bopp, "Modelling the H3O+-Ion: A Simulation Study of an Aqueous HCl Solution," Berichte der Bunsengesellschaft fur physikalische Chemie, vol. 97, pp. 982-995, 1993.
[6] J. E. Hensley, et al., "The effects of thermal annealing on commercial NafionR membranes," Journal of Membrane Science, vol. 298, pp. 190-201, 2007.
[7] H.-L. Lin, et al., "A Method for Improving Ionic Conductivity of Nafion Membranes and its Application to PEMFC," Journal of Polymer Research, vol. 13, pp. 379-385, 2006.
[8] J. Lu, et al., "Highly ordered mesoporous Nafion membranes for fuel cells," Chemical Communications, vol. 47, pp. 3216-3218, 2011.
[9] R. Savinell, et al., "A Polymer Electrolyte for Operation at Temperatures up to 200[degree]C," Journal of The Electrochemical Society, vol. 141, pp. L46-L48, 1994.
[10] Y. Z. Fu and A. Manthiram, "Nafion--Imidazole--H[sub 3]PO[sub 4] Composite Membranes for Proton Exchange Membrane Fuel Cells," Journal of The Electrochemical Society, vol. 154, pp. B8-B12, 2007.
[11] J. Sun, et al., "Acid-Organic base swollen polymer membranes," Electrochimica Acta, vol. 46, pp. 1703-1708, 2001.
[12] M. Doyle, et al., "High-Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane-Ionic Liquid Composites," Journal of The Electrochemical Society, vol. 147, pp. 34-37, 2000.
[13] P. L. Antonucci, et al., "Investigation of a direct methanol fuel cell based on a composite NafionR-silica electrolyte for high temperature operation," Solid State Ionics, vol. 125, pp. 431-437, 1999.
[14] P. Dimitrova, et al., "Transport properties of ionomer composite membranes for direct methanol fuel cells," Journal of Electroanalytical Chemistry, vol. 532, pp. 75-83, 2002.
[15] A. Sacca, et al., "Nafion-TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)," Journal of Power Sources, vol. 152, pp. 16-21, 2005.
[16] C. Yang, et al., "Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature," Electrochemical and Solid-State Letters, vol. 4, pp. A31-A34, 2001.
[17] G. Alberti, et al., "Protonic conductivity of layered zirconium phosphonates containing --SO3H groups. III. Preparation and characterization of [gamma]-zirconium sulfoaryl phosphonates," Solid State Ionics, vol. 84, pp. 97-104, 1996.
[18] C. Bi, et al., "Fabrication and investigation of SiO2 supported sulfated zirconia/NafionR self-humidifying membrane for proton exchange membrane fuel cell applications," Journal of Power Sources, vol. 184, pp. 197-203, 2008.
[19] G. Gnana Kumar, et al., "Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC," International Journal of Hydrogen Energy, vol. 34, pp. 9788-9794, 2009.
[20] Y. Jin, et al., "Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers," Journal of Power Sources, vol. 185, pp. 664-669, 2008.
[21] Y. Tominaga, et al., "Proton conduction in Nafion composite membranes filled with mesoporous silica," Journal of Power Sources, vol. 171, pp. 530-534, 2007.
[22] B. R. Matos, et al., "Nafion--Titanate Nanotube Composite Membranes for PEMFC Operating at High Temperature," Journal of The Electrochemical Society, vol. 154, pp. B1358-B1361, 2007.
[23] B. R. Matos, et al., "Nafion-based composite electrolytes for proton exchange membrane fuel cells operating above 120 °C with titania nanoparticles and nanotubes as fillers," Journal of Power Sources, vol. 196, pp. 1061-1068, 2011.
[24] R. Kannan, et al., "Domain Size Manipulation of Perflouorinated Polymer Electrolytes by Sulfonic Acid-Functionalized MWCNTs To Enhance Fuel Cell Performance," Langmuir, vol. 25, pp. 8299-8305, 2009.
[25] K. A. Mauritz, "Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides," Materials Science and Engineering: C, vol. 6, pp. 121-133, 1998.
[26] H. Tang, et al., "Self-assembled Nafion-silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells," Electrochemistry Communications, vol. 9, pp. 2003-2008, 2007.
[27] N. Miyake, et al., "Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Proton Electrolyte Membrane Fuel Cell Applications: I. Proton Conductivity and Water Content," Journal of The Electrochemical Society, vol. 148, pp. A898-A904, 2001.
[28] H. Wang, et al., "Nafion-bifunctional silica composite proton conductive membranes," Journal of Materials Chemistry, vol. 12, pp. 834-837, 2002.
[29] K. Xu, et al., "Acid-Functionalized Polysilsesquioxane−Nafion Composite Membranes with High Proton Conductivity and Enhanced Selectivity," ACS Applied Materials & Interfaces, vol. 1, pp. 2573-2579, 2009.
[30] F. Pereira, et al., "Advanced Mesostructured Hybrid Silica−Nafion Membranes for High-Performance PEM Fuel Cell," Chemistry of Materials, vol. 20, pp. 1710-1718, 2008.
[31] S. Y. So, et al., "In situ hybrid Nafion/SiO2-P2O5 proton conductors for high-temperature and low-humidity proton exchange membrane fuel cells," Journal of Membrane Science, vol. 360, pp. 210-216, 2010.
[32] K. Valle, et al., "Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer," Nat Mater, vol. 5, pp. 107-111, 2006.
[33] S. Malhotra and R. Datta, "Membrane-Supported Nonvolatile Acidic Electrolytes Allow Higher Temperature Operation of Proton-Exchange Membrane Fuel Cells," Journal of The Electrochemical Society, vol. 144, pp. L23-L26, 1997.
[34] K. T. Adjemian, et al., "Investigation of PEMFC operation above 100 °C employing perfluorosulfonic acid silicon oxide composite membranes," Journal of Power Sources, vol. 109, pp. 356-364, 2002.
[35] P. Costamagna, et al., "NafionR 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C," Electrochimica Acta, vol. 47, pp. 1023-1033, 2002.
[36] B. Tazi and O. Savadogo, "Parameters of PEM fuel-cells based on new membranes fabricated from NafionR, silicotungstic acid and thiophene," Electrochimica Acta, vol. 45, pp. 4329-4339, 2000.
[37] P. Staiti, et al., "Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells," Solid State Ionics, vol. 145, pp. 101-107, 2001.
[38] P. Dimitrova, et al., "Modified NafionR-based membranes for use in direct methanol fuel cells," Solid State Ionics, vol. 150, pp. 115-122, 2002.
[39] S. M. J. Zaidi, et al., "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications," Journal of Membrane Science, vol. 173, pp. 17-34, 2000.
[40] S. P. Nunes, et al., "Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells," Journal of Membrane Science, vol. 203, pp. 215-225, 2002.
[41] J. M. Amarilla, et al., "Antimonic acid and sulfonated polystyrene proton-conducting polymeric composites," Solid State Ionics, vol. 127, pp. 133-139, 2000.
[42] V. Neburchilov, et al., "A review of polymer electrolyte membranes for direct methanol fuel cells," Journal of Power Sources, vol. 169, pp. 221-238, 2007.
[43] X. Li, et al., "Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application," Polymer, vol. 46, pp. 5820-5827, 2005.
[44] B. Yang and A. Manthiram, "Comparison of the small angle X-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells," Journal of Power Sources, vol. 153, pp. 29-35, 2006.
[45] F. Wang, et al., "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes," Journal of Membrane Science, vol. 197, pp. 231-242, 2002.
[46] S. D. Mikhailenko, et al., "Sulfonated polyether ether ketone based composite polymer electrolyte membranes," Catalysis Today, vol. 67, pp. 225-236, 2001.
[47] M. L. Ponce, et al., "Reduction of methanol permeability in polyetherketone-heteropolyacid membranes," Journal of Membrane Science, vol. 217, pp. 5-15, 2003.
[48] Y.-H. Su, et al., "Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells," Journal of Membrane Science, vol. 296, pp. 21-28, 2007.
[49] I. Honma, et al., "Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane," Journal of Membrane Science, vol. 185, pp. 83-94, 2001.
[50] S. Wen, et al., "Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells," International Journal of Hydrogen Energy, vol. 34, pp. 8982-8991, 2009.
[51] T. Soboleva, et al., "Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes," Journal of Electroanalytical Chemistry, vol. 622, pp. 145-152, 2008.
[52] Y. A. Elabd, et al., "Triblock copolymer ionomer membranes: Part I. Methanol and proton transport," Journal of Membrane Science, vol. 217, pp. 227-242, 2003.
[53] Z. Bai, et al., "Synthesis and Characterization of Multiblock Sulfonated Poly(arylenethioethersulfone) Copolymers for Proton Exchange Membranes," Macromolecules, vol. 41, pp. 9483-9486, 2008.
[54] G. Avgouropoulos, et al., "Reforming methanol to electricity in a high temperature PEM fuel cell," Applied Catalysis B: Environmental, vol. 90, pp. 628-632, 2009.
[55] J. T. Wang, et al., "A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte," Journal of Applied Electrochemistry, vol. 26, pp. 751-756, 1996.
[56] L. Qingfeng, et al., "Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications," Journal of Applied Electrochemistry, vol. 31, pp. 773-779, 2001.
[57] R. Kannan, et al., "Artificially Designed Membranes Using Phosphonated Multiwall Carbon Nanotube−Polybenzimidazole Composites for Polymer Electrolyte Fuel Cells," The Journal of Physical Chemistry Letters, vol. 1, pp. 2109-2113, 2010.
[58] 李亮儀, "奈米管複合高分子中高溫質子交換膜," 化學系, 國立中央大學, 2008.
[59] C.-H. Ma, et al., "Morphology and properties of Nafion membranes prepared by solution casting," Polymer, vol. 50, pp. 1764-1777, 2009.
[60] T. D. Gierke, et al., "The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies," Journal of Polymer Science: Polymer Physics Edition, vol. 19, pp. 1687-1704, 1981.
[61] 黃振宏, "Nafion溶液成膜的物理性質與形態學研究," 化學工程學系, 元智大學, 2003.
[62] M. Yamada, et al., "One-dimensional proton conductor under high vapor pressure condition employing titanate nanotube," Electrochemistry Communications, vol. 8, pp. 1549-1552, 2006.
[63] A. Nakahira, et al., "TiO2-Derived Titanate Nanotubes by Hydrothermal Process with Acid Treatments and Their Microstructural Evaluation," ACS Applied Materials & Interfaces, vol. 2, pp. 2611-2616.
[64] Y.-L. Liu, et al., "Chitosan??ilica Complex Membranes from Sulfonic Acid Functionalized Silica Nanoparticles for Pervaporation Dehydration of Ethanol??ater Solutions," Biomacromolecules, vol. 6, pp. 368-373, 2004.
指導教授 諸柏仁(Peter.P.Chu) 審核日期 2011-7-26

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡