博碩士論文 982203037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.215.182.81
姓名 陳旻裕(Min-yu Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池
(A VinylThiophene-Based Anchoring Ligand and Its Heteroleptic Sensitizer for Dye-Sensitized Solar Cells)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 染料敏化太陽能電池用二茂鐵系統電解質的探討★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池
★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用★ Design and Synthesis of Ruthenium Dyes for High Open-circuit Voltage Dye-sensitized Solar Cells
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 染料敏化太陽能電池(DSSCs)是最被廣泛研究的第三代太陽能電池之一,此類型電池光電流的來源-染料,是影響電池光電轉換效率與元件長時間穩定性的重要關鍵,而增加染料的吸光能力一直是染料的主要研究方向。本論文藉由分子結構設計,來調控染料HOMO與LUMO能階位置使能隙變小,最大吸收波長紅位移,而設計及合成出一個新結構輔助配位基Ligand-20和另一個新結構固著配位基Ligand-22。再使用所合成之配位基利用“One-Pot”合成法製備非對稱型釕金屬錯合物 CYC-B20、CYC-B22 。這兩個染料分子的最大吸收波長與吸收係數分別為 556 nm、21700 M-1cm-1 和569 nm、33300 M-1cm-1。最後以CYC-B20及CYC-B22當光敏化劑所組裝成的染料敏化太陽能電池元件,在AM1.5光源照射,光電轉換效率分別為8.76 %與8.89 % (於同條件下由SJW-E1所敏化的電池元件效率為7.33 %),顯示此二染料應用在DSSC的潛能。
摘要(英) Dye sensitized solar cell (DSSC) is one of the 3rd generation solar cells has been investigated extensively in the past three decades. Photosensitizer, the source for the photon to electricity conversion is the most critical component in determining the efficiency and long-term stability of DSSCs. There are lots of work is focus on enhancing the light-harvest capacity of the dye molecules. Tuning the energy level of highest occupied molecular orbital and lowest unoccupied molecular orbital to shift the ?max and energy gap of dye in a common strategy. The objective of this thesis is to design and synthesize a novel ancillary ligand (called ligand-20) and an anchoring ligand (called ligand-22) for Ru-based photo-Sensitizer. The corresponding ruthenium complexes CYC-B20 and CYC-B22 were synthized with a typical “one-pot” process. The λmax and absorption coefficient of CYC-B20 and CYC-B22 are 556 nm, 21600 M-1cm-1 and 569 nm, 33300 M-1cm-1, respectively. The conversion efficiency of the dye sensitized solar cells based on CYC-B20 and CYC-B22 dyes are 8.76 % and 8.89 %, respectively under the AM 1.5 simulated sunlight (100 mWcm-2) illumination. The efficiency for SJW-E1 dye is 7.33 % under the same cell fabrication and photovoltaic performance measureing conditions. The results reveal that these dyes display great potential for appling in dye-sensitized solar cells.
關鍵字(中) ★ 釕金屬錯合物
★ 染料敏化太陽能電池
★ 染料
關鍵字(英) ★ dye
★ dye sensitized solar cell
★ ruthenium complex
論文目次 中文摘要………………………………………………………………….I
英文摘要………………………………………………………………...II
目錄..........................................................................................................III
圖目錄......................................................................................................VI
表目錄...................................................................................................VIII
壹、序論......................................................................................................1
1-1、太陽能電池.........................................................................................1
1-2、染料敏化太陽能電池……….............................................................2
1-3、染料敏化太陽能電池的組成與工作原理.........................................4
1-4、光電轉換效率(η)的量測...................................................................5
1-4-1、IPCE (incident photon to current conversion efficiency)..............6
1-4-2、總光電轉換效率( η ) ......................................................................7
1-5、釕金屬光敏化劑.................................................................................8
1-6、釕金屬錯合物染料分子的結構.........................................................9
1-6-1、對稱型釕金屬錯合物染料………………….................................9
1-6-2、非對稱型釕金屬錯合物染料………………...............................11
1-6-2-1、輔助配位基的設計(1):使用疏水性長鏈……….……………11
1-6-2-2、輔助配位基的設計(2):增加共軛單元.....................................13
1-6-2-3、輔助配位基的設計(3):使用electron-donor-group..................16
1-6-2-4、固著配位基的設計(1):增加共軛單元……….………………20
1-7、研究動機…………………………………………………………...22
貳、實驗部分............................................................................................25
2-1、實驗藥品...........................................................................................25
2-2、儀器分析與樣品製備.......................................................................28
2-2-1、紫外光/可見光吸收光譜儀 (UV/Vis. Spectrometer) .................28
2-2-2、核磁共振光譜儀 (NMR) .............................................................29
2-4、目標產物及中間產物結構、命名及簡稱.........................................30
2-4-1、4,4-dibromo-2,2-bipyridine (4,4’-dibromo-bpy)的合成...............33
2-4-1-1、[2,2’]Bipyridinyl-1,1’-dioxide (bpy-dioxide)的合成……….....34
2-4-1-2、4,4’-Dinitro-[2,2’]bipyridinyl-1,1’-dioxide(dinitro-bpy-dioxide
的合成…………………………………………........................34
2-4-1-3、4,4’-Dibromo-2,2’bipyridinyl-1,1’-dioxide(dibromo-bpy-
    dioxide)的合成…………………………………………….....35
2-4-1-4、4,4’-Dibromo-2,2’bipyridine (4,4’-dibromo-bpy)的合成…....36
2-4-2、Ligand-20的合成………………………………………………..37
2-4-2-1、5-(hexythio)-2,3-dihydrothieno[3,4-b][1,4]dioxine(EDOT-SH)
的合成………………………………………………………..38
2-4-2-2、(5-(hexylthio)-2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)
Trimethylstannane(TMeSnEDOT-SH)的合成……………….39
2-4-2-3、4-(5-(hexylthio)-2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-2-
(4-(5-(hexylthio)-2,-dihydrothieno[3,4-b][1,4]dioxin-7-yl)
pyridine-2-yl) Pyridine(Ligand-20)的合成…………………..39
2-4-3、Ligand-22的合成………………………………………………..41
2-4-3-1、3-hexylthiophene(3-HT)的合成………………………………42
2-4-3-2、2-bromo-3-hexylthiophene(2-Br-3-HT )的合成………………43
2-4-3-3、3-hethiophene-2-carbaldehyde(3-HT-CHO) 的合成…………43
2-4-3-4、2-(3-hexylthiophen-2-yl)-1,3-dioxolane(3-HT-Dioxolane) 的
合成…………………………………………………………..44
2-4-3-5、(5-(1,3-dioxolan-2-xylthiophen-2-yl)trimethylstannane
(TMeSn-3-HT-Dioxolane)的合成……………………………45
2-4-3-6、5-(2-(4-(5-formyl-4-hexythiophen-2-yl)pyridine-2-yl)
pyridine-4-yl)-3-hexylthiophene-2-carbaldehyde(HTABPY)
的合成………………………………………………………..46
2-4-3-7、Bpy-thio-coome的合成……………………………………....47
2-4-3-8、Ligand-22的合成…………………………………………….48
2-4-4、CYC-B20及CYC-B22的合成......................................................49
参、結果與討論........................................................................................53
3-1、CYC-B20和CYC-B22分子前置軌域的理論計算…………......53
3-2、CYC-B20和CYC-B22的光學性質探討……………..…………55
3-3、CYC-B20與CYC-B22的前置軌域能階探討……..……………58
3-4、使用CYC-B20和CYC-B22作為光敏化劑所組裝的DSSC電池
元件效率探討……………………………………………………61
肆、結論....................................................................................................68
伍、參考文獻............................................................................................69
陸、附錄…………………………………………………………………72
圖目錄
圖1-1: 染料敏化太陽能電池元件之構造示意圖...................................5
圖1-2: AM 1.5太陽光的定意圖...............................................................6
圖1-3: I-V曲線圖......................................................................................7
圖1-4: N3染料的結構...............................................................................9
圖1-5: N3吸收光譜圖...............................................................................9
圖1-6: Black Dye染料的結構...................................................................9
圖1-7: Black Dye、N3所組裝DSSC元件的IPCE圖...............................9
圖1-8: K8染料的結構.............................................................................10
圖1-9: K8與N3吸收光譜圖..................................................................10
圖1-10: N719的染料結構.......................................................................11
圖1-11: 非對稱釕金屬錯合物示意圖..........................................................11
圖1-12: Z907染料的結構...........................................................................11
圖1-13: LiI、EMIDCN及PMII的結構式.............................................12
圖1-14: Z907和N719組成的元件長時間的穩定性測試圖.................12
圖1-15: CYC-B1染料的結構 ……………….…………………………..……13
圖1-16: CYC-B1染料和N3的吸收光譜圖…..………………………..………13
圖1-17: CYC-B3、SJW-E1染料的結構…………………………..………….14
圖1-18: CYC-B3、SJW-E1及N3的吸收光譜圖……….……………………14
圖1-19: C103、C107染料的結構.………... ………………………….……….15
圖1-20: C103、C107及Z907的吸收光譜圖…………………………..……15
圖1-21: N845染料的結構 …………..… ……….……….…………...….……..17
圖1-22: N845染料吸附在二氧化鈦的電子傳遞傳遞示意圖…...…….…...…….17
圖1-23: CYC-B11染料的結構…………………………………………....….18
圖1-24: CYC-B11組成的元件長時間穩定性測試圖……..………….18
圖1-25: CYC-B5染料的結構 ………………………………….….…………..20
圖1-26: CYC-B5和CYC-B1吸收光譜圖……………………….…………….20
圖1-27: CYC-B5、CYC-B1、N3的組裝之DSSC元件的IPCE圖..……..……21
圖1-28: CYC-B5、CYC-B1、N3的前置軌域能階示意圖... …………….……21
圖1-29: Ligand-20的結構…………………………………………..……..…22
圖1-30: Ligand-22的結構…………………………………………..…..……23
圖1-31: CYC-B22吸附在二氧化鈦電極表面的示意圖…….…….….23
圖1-32: CYC-B20染料的結構………………………………………...23
圖1-33: CYC-B22染料的結構………………………………………...24
圖2-1: 除水裝置圖.................................................................................35
圖3-1: CYC-B20的前置軌域分佈……………….……………………54
圖3-2: CYC-B22的前置軌域分佈…………………………………….54
圖3-3: 染料CYC-20、CYC-22、SJW-E1及三個不同配位基在溶液
DMF中的吸收光譜圖……………………………………….55
圖3-4: 染料CYC-20的薄膜及溶液DMF中吸收光譜圖比較….…..57
圖3-5: 染料CYC-22的薄膜及溶液DMF中吸收光譜圖比較……...58
圖3-6: 染料CYC-20、CYC-22的電化學Square-Wave Voltammograms
曲線圖……………………………………………………..…..59
圖3-7: TiO2、CYC-B22、CYC-B20及I-/I3-的前置軌域能階示意圖………..…..61
圖3-8: 染料CYC-22搭配不同濃度之共吸附劑組裝成元件效能…..63
圖3-9: 染料CYC-22搭配電解質中不同濃度的LiI組裝成之電池元
件效能……..…………………..………………………………64
圖3-10: CYC-20、CYC-22、SJW-E1所組裝之染敏電池元件I-V
圖……………………………………………………………..66
圖3-11: CYC-20、CYC-22、SJW-E1所組裝之染敏電池元件IPCE
圖……………………………………………………………..66
表目錄
表1-1: CYC-B1和N3所組裝DSSC元件的效能數據………………….…..14
表1-2: CYC-B3、SJW-E1和N3所組裝的DSSC元件效能數據……………15
表1-3: C103、C107和Z907所組裝的DSSC元件效能數據…………….…..16
表1-4: 使用多電子系統輔助配位基的染料之光學性質與組裝成DSSC元件時
之效率數據表……………………………………………….………….19
表1-5: CYC-B5、CYC-B1及N3所組裝之DSSC元件的效能數據……..21
表3-1: CYC-B20、CYC-B22各氧化還原峰的位能值.……….……….60
表3-2: CYC-B20、CYC-B22的光學與電化學數據………….………61
表3-3: CYC-20、CYC-22、SJW-E1所組裝之染敏電池元件的效能...65
參考文獻 1. 林明獻,太陽電池技術入門,全華,2007,1
2. B. O’Regand, and M. Grätzel, Nature. 1991, 353, 737.
3. Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, ACS Nano. 2010, 4(10), 7644.
4. N. Cai, S. J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, Nano Lett. 2011, 11(4), 1452.
5. M. Grätzel, Nature. 2001, 414, 338.
6. 林亞秀,2009, 國立成功大學化學工程研究所論文, p13
7. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382.
8. M. K. Nazeeruddin, P. Pe´chy, T. Renouard, S. M. Zakeeruddin,R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613.
9. C. Klein, M. K. Nazeeruddin, P. Liska, N. Hirata, E. Palomares, J. R. Durrant, and M. Gratzel, Inorg. Chem. 2005, 44, 178.
10. M. K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte, and M. Grätzel, Chem. Comm. 2003, 1456.
11. P. Wang, S. M. Zakeeruddin, J.-E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, Nature Materials. 2003, 2, 402.
12. C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen, and K.-C. Ho, Angew. Chem. Int. Ed. 2006, 45, 5822.
13. C.-Y. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu, J.-G. Chen, and K.-C. Ho, Adv. Mater. 2007, 115, 6382.
14. Q. Yu, S. Liu, M. Zhang, N. Cai, Y. Wang, and P. Wang, J. Phys. Chem. C 2009, 113, 14559.
15. N. Hirata, E. J. Palomares, J. Durrant, M. K. Nazeeruddin, M. Gratzel, and D. D. Censo, Chem. Eur. J. 2004, 10, 59.
16. C.-Y. Chen, J.-Y. Li, C.-H. Tsai, C.-G. Wu, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J.-D. Decoppet, S. M. Zakeeruddin, and M. Grätzel, ACS Nano. 2009, 3(10), 3103.
17. C.-Y. Chen, J.-G. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu, and K.-C. Ho, Angew. Chem. Int. Ed. 2008, 120, 7452.
18. C.-Y. Chen, N. Pootrakulchote, S.-J. Wu, M. Wang, J.-Y. Li, J.-H. Tsai, C.-G. Wu, S. M. Zakeeruddin, and M. Grätzel, J. Phys. Chem. C 2009, 113, 20753
19. S.-J. Wu, C.-Y. Chen, J.-Y. Li, C.-G. Wu, J.-G. Chen, and K.-C. Ho, Dyes and Pigments. 2010, 84, 95.
20. A.Mishra, N. Pootrakulchote, M. K. R. Fischer, C. Klein, M. K. Nazeeruddin, S. M. Zakeeruddin, P. Bäuerle, and M. Grätzel, Chem. Commun. 2009, 7146.
21. H. Staats, F. Eggers, O. Ha, F. Fahrenkrug, J. Matthey, U. Lüning, and A. Lützen. Eur. J. Org. Chem., 2009, 4777.
22. 吳鑄恩,2002, 國立中央大學化學研究所論文, p27.
23. 吳鑄恩,2002, 國立中央大學化學研究所論文, p29.
24. Naraso and F. Wudl, Macromolecules. 2008, 41, 3169.
25. H. Chen, H. Huang, X. Huang, J. N. Clifford, A. Forneli, E. Palomares, X. Zheng, L. Zheng, X. Wang, P. Shen, B. Zhao, and S. Tan, J. Phys. Chem. C 2010, 114, 3280.
26. T. Renouard, R. A. Fallahpour, M. K. Nazeeruddin, R. Humphry- Baker, S. I. Gorelsky, A. B. P. Lever, and M. Grätzel, Inorg. Chem. 2002, 41, 367.
27. E. Figgemeier, V. Aranyos, E. C. Constable, R. W. Handel, C. E. Housecroft, C. Risinger, A. Hagfeldt, and E. Mukhtar, Inorg. Chem. Comm. 2004, 7, 117.
28. H. Rensmo, S. Sodergren, L. Patthey, K. Westmark, L. Vayssieres, O. Khole, P. A. Bruhwiler, A. Hagfeldt, and H. Siegbahn, Chem. Phy. Lett. 1997, 274, 51.
29. C. Daul, E. J. Baerends, and P. Vernooijs, Inorg. Chem. 1994, 33, 3538.
30. J. E. Monat, J. H. Rodrigues, and J. K. McCusker, J. Phys. Chem. A 2002, 106, 7399.
31. J. F. Guillemoles, V. Barone, L. Joubert, and C. Adamo, J. Phys. Chem. A 2002, 106, 11354.
32. H. Zabri, I. Gillaizeau, C. A. Bignozzi, S. Caramori, M. F. Charlot, J. Cano-Boquera, and F. Odobel, Inorg. Chem. 2003, 42, 6655.
33. S. Fantacci, F. De Angelis, and A. Selloni, J. Am. Chem. Soc. 2003, 125, 4381.
34. H. Choi, I. Raabe, D. Kim, F. Teocoli, C. Kim, K. Song, J. H. Yum, J. Ko, M. K. Nazeeruddin, and M. Grätzel, Chem. Eur. J, 2010, 16, 1193.
35. S. Ito, H. Miura, S. Uchida, M.Takata, K. Sumioka, P. Comte, P. Pechy, and M. Grätzel, Chem. Commun. 2008, 5194.
36. S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant. J. Phys. Chem. B 2000, 104, 538.
指導教授 吳春桂(Chun-guey Wu) 審核日期 2011-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明