博碩士論文 982203038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.223.106.100
姓名 賴維祥(Wei-Xiang Lai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制
(Cation-Phospholipid Clustering in Anionic Phospholipid Bilayers: Highlight the Stalk Formation in Membrane Fusion)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 染料敏化太陽能電池吸光性質的計算研究★ Free Energy Landscape of Ca2+ Induced Lipid Micelle Fusion : Observation of a Dewetting Transition
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 生物膜在許多生物反應上扮演重要的角色,其性質會受到陽離子與脂質組成影響,本論文利用系統性的全原子分子動態模擬,來研究三種不同負電磷脂質比例的脂雙層在含有 Na+、Mg2+、Ca2+ 三種不同陽離子時對膜性質的影響,模擬結果發現大部分的陽離子與磷脂質上磷酸基團(phosphate group) 有較強的作用力,此作用力的大小受到陽離子種類與磷脂質組成比例影響,其中Ca2+ 與磷脂質間有很強的吸引力。當陽離子被吸引到膜面上時,會造成膜面積變小、膜變厚、秩序參數變大、頭基的轉動速度變慢。陽離子與磷脂質間會形成配位,這些配位體間在含有負電磷脂質時會更進一步形成多金屬中心的 clusters ,尤其是在含有 Ca2+ 的情形下。形成這些配位與 clusters 會中和膜面上的負電與減少膜面上的水分子(脫水的現象),營造膜聚集的有利環境,我們同時推測多金屬中心 Ca2+-cluster 的形成,將有利於膜融合步驟中stalk 結構的生成。
摘要(英) Membranes play key roles in many biological processes, which are affected by cations and lipid compositions. Aimed to systematically understand how the membrane properties are affected by cations and lipid compositions, all-atom long time-scale molecular dynamics simulations were performed for phospholipid bilayers containing three different proportions of negatively charged lipids in the presence of Na+, Mg2+ and Ca2+. Simulations show that cations prefer to bind with the phosphate groups of lipids and the cation-lipid binding affinities depend on cations and lipid compositions. Particularly, the Ca2+ has strong binding affinity with lipids. Binding of cations to lipids leads the lipid bilayers to be smaller in its lateral area, thicker, more ordered and slower rotation of lipid head groups. Cations form complexes with lipids and these complexes further assemble to form various multiple-cation-centered clusters in the presence of anionic lipids, in particular, the Ca2+. Formation of cation-lipid complexes as well as clusters dehydrate and neutralize the anionic lipids, creating an energy favorable environment for membrane aggregation. We propose the formation of Ca2+-phospholipid clusters across apposed lipid bilayers are a kinetically and thermodynamically favorable pathway for the stalk state formation in membrane fusion.
關鍵字(中) ★ 膜融合
★ 分子動態模擬
★ 配位網絡結構
★ 脂雙層
關鍵字(英) ★ Cation-Phospholipid Cluster
★ Lipid Bilayers
★ Molecular Dynamic Simulation
★ Membrane Fusion
論文目次 摘要 i
Abstract ii
誌謝 iii
Table of contents iv
List of figures v
List of tables vi
Chapter 1 - Introduction 1
Chapter 2 - Methods 6
Chapter 3 - Results 10
3-1 Area Per Lipid and Membrane Thickness 10
3-2 Atom Location 14
3-3 Cation-Lipid Complex 19
3-4 Cation-Lipid Clusters with Multiple Cations 28
3-5 POPG Domain Sizes and Populations 33
3-6 Lipid Hydration 35
3-7 Order Parameters 36
3-8 Head Group Orientation and Rotation 40
Chapter 4 - Discussion 43
Chapter 5 - Conclusions and Summary 52
References 54
Appendix A 63
Appendix B 64
Appendix C 68
參考文獻 1. Stryer, L. 1988. Biochemistry. W.H. Freeman and Co., New York.
2. Wilkinson, S. G., and C. Ratledge. 1988. Microbial lipids. Academic Press, London.
3. Weber, F. J., and J. A. M. deBont. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta. 1286:225-245.
4. Isken, S., and J. A. M. de Bont. 1998. Bacteria tolerant to organic solvents. Extremophiles. 2:229-238.
5. Kasson, P. M., and V. S. Pande. 2007. Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics. PLoS Comput. Biol. 3:2228-2238.
6. Haque, M. E., T. J. McIntosh, and B. R. Lentz. 2001. Influence of lipid composition on physical properties and PEG-mediated fusion of curved and uncurved model membrane vesicles: "nature's own" fusogenic lipid bilayer. Biochemistry. 40:4340-4348.
7. Altenbach, C., and J. Seelig. 1984. Ca2+ binding to phosphatidylcholine bilayers as studied by deuterium magnetic resonance. Evidence for the formation of a Ca2+ complex with two phospholipid molecules. Biochemistry. 23:3913-3920.
8. Binder, H., and O. Zschörnig. 2002. The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. Chem. Phys. Lipids. 115:39-61.
9. Ross, M., C. Steinem, H.-J. Galla, and A. Janshoff. 2001. Visualization of chemical and physical properties of calcium-induced domains in DPPC/DPPS Langmuir-Blodgett layers. Langmuir. 17:2437-2445.
10. Schultz, Z. D., I. M. Pazos, F. K. McNeil-Watson, E. N. Lewis, and I. W. Levin. 2009. Magnesium-induced lipid bilayer microdomain reorganizations: implications for membrane fusion. J. Phys. Chem. B. 113:9932-9941.
11. Hodgkin, A. L., and P. Horowicz. 1960. The effect of nitrate and other anions on the mechanical response of single muscle fibres. J. Physiol. 153:404-412.
12. Garcia-Manyes, S., G. Oncins, and F. Sanz. 2005. Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy. Biophys. J. 89:1812-1826.
13. Garcia-Celma, J. J., L. Hatahet, W. Kunz, and K. Fendler. 2007. Specific anion and cation binding to lipid membranes investigated on a solid supported membrane. Langmuir. 23:10074-10080.
14. Schultz, Z. D., and I. W. Levin. 2008. Lipid microdomain formation: characterization by infrared spectroscopy and ultrasonic velocimetry. Biophys. J. 94:3104-3114.
15. Picas, L., M. T. Montero, A. Morros, M. E. Cabañas, B. Seantier, P.-E. Milhiet, and J. Hernández-Borrell. 2009. Calcium-induced formation of subdomains in phosphatidylethanolamine-phosphatidylglycerol bilayers: a combined DSC, 31P NMR, and AFM study. J. Phys. Chem. B. 113:4648-4655.
16. Lyubartsev, A. P., and A. L. Rabinovich. 2010. Recent development in computer simulations of lipid bilayers. Soft Matter. 7:25-39.
17. Cordomí, A., O. Edholm, and J. J. Perez. 2008. Effect of ions on a dipalmitoyl phosphatidylcholine bilayer. A molecular dynamics simulation study. J. Phys. Chem. B. 112:1397-1408.
18. Vácha, R., S. W. I. Siu, M. Petrov, R. A. Böckmann, J. Barucha-Kraszewska, P. Jurkiewicz, M. Hof, M. L. Berkowitz, and P. Jungwirth. 2009. Effects of alkali cations and halide anions on the DOPC lipid membrane. J. Phys. Chem. A. 113:7235-7243.
19. Stępniewski, M., A. Bunker, M. Pasenkiewicz-Gierula, M. Karttunen, and T. Róg. 2010. Effects of the lipid bilayer phase state on the water membrane interface. J. Phys. Chem. B. 114:11784-11792.
20. Gurtovenko, A. A., and I. Vattulainen. 2008. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. J. Phys. Chem. B. 112:1953-1962.
21. Zhao, W., T. Róg, A. A. Gurtovenko, I. Vattulainen, and M. Karttunen. 2007. Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions. Biophys. J. 92:1114-1124.
22. Dahlberg, M., and A. Maliniak. 2008. Molecular dynamics simulations of cardiolipin bilayers. J. Phys. Chem. B. 112:11655-11663.
23. Porasso, R. D., and J. J. L. Cascales. 2009. Study of the effect of Na+ and Ca2+ ion concentration on the structure of an asymmetric DPPC/DPPC + DPPS lipid bilayer by molecular dynamics simulation. Colloids Surf. B Biointerfaces. 73:42-50.
24. Zhao, W., T. Róg, A. A. Gurtovenko, I. Vattulainen, and M. Karttunen. 2008. Role of phosphatidylglycerols in the stability of bacterial membranes. Biochimie. 90:930-938.
25. Vernier, P. T., M. J. Ziegler, and R. Dimova. 2009. Calcium binding and head group dipole angle in phosphatidylserine-phosphatidylcholine bilayers. Langmuir. 25:1020-1027.
26. Murzyn, K., T. Róg, and M. Pasenkiewicz-Gierula. 2005. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys. J. 88:1091-1103.
27. Risselada, H. J., and S. J. Marrink. 2008. The molecular face of lipid rafts in model membranes. Proc. Natl. Acad. Sci. USA. 105:17367-17372.
28. Böckmann, R. A., and H. Grubmüller. 2004. Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study. Angew. Chem. Int. Ed. Engl. 43:1021-1024.
29. Mukhopadhyay, P., L. Monticelli, and D. P. Tieleman. 2004. Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. Biophys. J. 86:1601-1609.
30. Pandit, S. A., and M. L. Berkowitz. 2002. Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions. Biophys. J. 82:1818-1827.
31. Pasenkiewicz-Gierula, M., K. Murzyn, T. Róg, and C. Czaplewski. 2000. Molecular dynamics simulation studies of lipid bilayer systems. Acta Biochim. Pol. 47:601-611.
32. Tsai, C.-W., N.-Y. Hsu, C.-H. Wang, C.-Y. Lu, Y. Chang, H.-H. G. Tsai, and R.-C. Ruaan. 2009. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J. Mol. Biol. 392:837-854.
33. Hallock, K. J., D.-K. Lee, J. Omnaas, H. I. Mosberg, and A. Ramamoorthy. 2002. Membrane composition determines pardaxin's mechanism of lipid bilayer disruption. Biophys. J. 83:1004-1013.
34. Jo, S., T. Kim, V. G. Iyer, and W. Im. 2008. Software news and updates - CHARNIM-GUI: a web-based grraphical user interface for CHARMM. J. Comput. Chem. 29:1859-1865.
35. Klauda, J. B., R. M. Venable, J. A. Freites, J. W. O'Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell, and R. W. Pastor. 2010. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B. 114:7830-7843.
36. Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926-935.
37. Kalé, L., R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and K. Schulten. 1999. NAMD2: greater scalability for parallel molecular dynamics. J. Comput. Phys. 151:283-312.
38. Feller, S. E., Y. Zhang, R. W. Pastor, and B. R. Brooks. 1995. Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103:4613-4621.
39. Steinbach, P. J., and B. R. Brooks. 1994. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem. 15:667-683.
40. Ryckaert, J.-P., G. Ciccotti, and H. J. C. Berendsen. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23:327-341.
41. Shinoda, W., and S. Okazaki. 1998. A Voronoi analysis of lipid area fluctuation in a bilayer. J. Chem. Phys. 109:1517-1521.
42. Allen, W. J., J. A. Lemkul, and D. R. Bevan. 2009. GridMAT-MD: a grid-based membrane analysis tool for use with molecular dynamics. J. Comput. Chem. 30:1952-1958.
43. Shaikh, S. R., M. R. Brzustowicz, N. Gustafson, W. Stillwell, and S. R. Wassall. 2002. Monounsaturated PE does not phase-separate from the lipid raft molecules sphingomyelin and cholesterol: role for polyunsaturation? Biochemistry. 41:10593-10602.
44. Perly, B., I. C. P. Smith, and H. C. Jarrell. 1985. Acyl chain dynamics of phosphatidylethanolamines containing oleic acid and dihydrosterculic acid: 2H NMR relaxation studies. Biochemistry. 24:4659-4665.
45. Seelig, J., P. M. MacDonald, and P. G. Scherer. 1987. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 26:7535-7541.
46. Reddy, G., J. E. Straub, and D. Thirumalai. 2009. Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Ab peptides with implications for rates of fibril formation. J. Phys. Chem. B. 113:1162-1172.
47. Rand, R. P., N. Fuller, V. A. Parsegian, and D. C. Rau. 1988. Variation in hydration forces between neutral phospholipid bilayers: evidence for hydration attraction. Biochemistry. 27:7711-7722.
48. Uhríková, D., N. Kučerka, J. Teixeira, V. Gordeliy, and P. Balgavý. 2008. Structural changes in dipalmitoylphosphatidylcholine bilayer promoted by Ca2+ ions: a small-angle neutron scattering study. Chem. Phys. Lipids. 155:80-89.
49. Hénin, J., W. Shinoda, and M. L. Klein. 2009. Models for phosphatidylglycerol lipids put to a structural test. J. Phys. Chem. B. 113:6958-6963.
50. Herbette, L., C. A. Napolitano, and R. V. McDaniel. 1984. Direct determination of the calcium profile structure for dipalmitoyllecithin multilayers using neutron diffraction. Biophys. J. 46:677-685.
51. Dluhy, R. A., D. G. Cameron, H. H. Mantsch, and R. Mendelsohn. 1983. Fourier transform infrared spectroscopic studies of the effect of calcium ions on phosphatidylserine. Biochemistry. 22:6318-6325.
52. Fukuma, T., M. J. Higgins, and S. P. Jarvis. 2007. Direct imaging of lipid-ion network formation under physiological conditions by frequency modulation atomic force microscopy. Phys. Rev. Lett. 98:106101.
53. Macdonald, P. M., and J. Seelig. 1987. Calcium binding to mixed phosphatidylglycerol-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance. Biochemistry. 26:1231-1240.
54. Cohen, F. S., and G. B. Melikyan. 2004. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199:1-14.
55. Chernomordik, L. V., and M. M. Kozlov. 2005. Membrane hemifusion: crossing a chasm in two leaps. Cell. 123:375-382.
56. Jahn, R., T. Lang, and T. C. Südhof. 2003. Membrane fusion. Cell. 112:519-533.
57. Jahn, R., and H. Grubmüller. 2002. Membrane fusion. Curr. Opin. Cell Biol. 14:488-495.
58. Portis, A., C. Newton, W. Pangborn, and D. Papahadjopoulos. 1979. Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. Biochemistry. 18:780-790.
59. Düzgüne, N., S. Nir, J. Wilschut, J. Bentz, C. Newton, A. Portis, and D. Papahadjopoulos. 1981. Calcium- and magnesium-induced fusion of mixed phosphatidylserine/phosphatidylcholine vesicles: effect of ion binding. J. Membr. Biol. 59:115-125.
60. Düzgünes, N., J. Wilschut, R. Fraley, and D. Papahadjopoulos. 1981. Studies on the mechanism of membrane fusion. Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. Biochim. Biophys. Acta. 642:182-195.
61. Silvius, J. R., and J. Gagné. 1984. Calcium-induced fusion and lateral phase separations in phosphatidylcholine-phosphatidylserine vesicles. Correlation by calorimetric and fusion measurements. Biochemistry. 23:3241-3247.
62. Boettcher, J. M., R. L. Davis-Harrison, M. C. Clay, A. J. Nieuwkoop, Y. Z. Ohkubo, E. Tajkhorshid, J. H. Morrissey, and C. M. Rienstra. 2011. Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. Biochemistry. 50:2264-2273.
63. Knecht, V., and S.-J. Marrink. 2007. Molecular dynamics simulations of lipid vesicle fusion in atomic detail. Biophys. J. 92:4254-4261.
64. Smeijers, A. F., A. J. Markvoort, K. Pieterse, and P. A. J. Hilbers. 2006. A detailed look at vesicle fusion. J. Phys. Chem. B. 110:13212-13219.
65. Issa, Z. K., C. W. Manke, B. P. Jena, and J. J. Potoff. 2010. Ca2+ bridging of apposed phospholipid bilayers. J. Phys. Chem. B. 114:13249-13254.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2011-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明