博碩士論文 982203059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.119.167.173
姓名 吳佩琪(Pei-chi Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 腺苷與香豆素共軛連結化合物之合成與其構形之探討
(Conjugation of Adenosine with Coumarins:Synthesis and Study on their Conformation)
相關論文
★ 合成醯胺鍵及胺鍵連結之鳥苷與香豆素共軛化合物並探討其構形★ 合成含腺嘌呤核苷之新型奈米碳管
★ 合成具有抗病毒潛力的香豆素與腺嘌呤、腺苷、 肌苷之胺鍵標靶共軛化合物★ 合成腺苷與含氮雜環之硫烷鍵共軛化合物作為抗病毒試劑
★ 探討電子效應和立體障礙對於「胺基醇」轉換成烯類化合物之影響★ 探討β胺醇之α碳上立體障礙與電子效應對苯炔誘導形成碳與碳雙鍵反應之影響
★ 研究「二苯並環庚烯」及「脂芳烴」之「阿昔洛韋」共軛化合物 的結構與抗病毒活性的關係★ 合成具有抗腸病毒活性「二苯」及 「亞甲基二苯」與「阿昔洛韋」之共軛化合物
★ 合成脲鍵連結之「去甲替林」與「核苷」 共軛化合物用作抗腸病毒藥劑★ 合成「核苷」與「金剛胺」連結之脲鍵化合物作為抗病毒藥劑
★ 合成含胺基酸酯之「無環鳥苷」與「去甲替林」共軛化合物作為抗腸病毒藥劑★ 探討合成含四級胺鹽之金奈米粒子之條件
★ 苯并咪唑與香豆素共軛連結化合物之合成與其構型之探討★ 合成醯胺鍵結苯并咪唑與香豆素之化合物並探討其構形
★ 設計及合成含藥物之新穎鉑錯合物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 根據世界衛生組織(WHO)統計,全球大約有1億7千萬人口感染C型肝炎病毒(Hepatitis C Virus, HCV),台灣亦有92萬人口為C型肝炎病患。然而感染初期病徵是隱伏的,因此病患往往不自覺已罹患C型肝炎,錯失提早治療機會造成日益越發嚴重之肝臟病變。
我們希望合成出具有抗C型肝炎病毒效果的化合物,並進一步討論其合成與立體結構。在DMF中,使用pyridine當鹼的條件,於低溫下以adenosine衍生物與6-substituted coumarin carboxylic chlorides進行先加成後消去之偶合反應,可得到目標化合物以adenosine–coumarin連結在一起的共軛化合物。
藉由了解分子之結構構形,可利於抗C型肝炎病毒活性數據之解釋,我們利用核磁共振圖譜、紅外線光譜以及分子模擬計算的技術,發現共軛物醯胺鍵上NH的氫原子與coumarin結構中C=O的氧原子之間,其構形在最穩定能量態下,可觀察到分子內氫鍵的形成;不同取代基之共軛化合物,其purine環及coumarin此兩平面基團,其dihedral angle為0.37°–38.25°,有關此分子構形之觀察數據,可提供我們研究此類化合物於抑制C型肝炎病毒作用機制,提供參考依據。
摘要(英) According to the World Health Organization (WHO) statistics, about 170 million people infected with hepatitis C virus (HCV) worldwide, and in Taiwan is also a population of 920,000 patients with hepatitis C virus. However, the symptoms are latent early, so patients often do not know they have risk of hepatitis C, resulting in more serious liver disease.
Our aim is to synthesis the novel compounds which can inhibit the hepatitis C virus. We successfully synthesized the compounds in which adenosine bound together with coumarin moiety, and these compounds can be easily synthesized by using addition-elimination reaction. We used different techniques like 1H NMR, mass spectroscopy, IR spectroscopy and molecular modeling to study the structure and conformation of the compounds. By comparing all the we conclude that the conformation with the thermodynamically most stable form contain intramolecular hydrogen bondings between the NH proton in amide bond and the carbonyl group in coumarin. The angle between puriune and coumarin planes were 0.37°–38.25°. In the future, we will discuss the structure–activity relationship of anti-HCV, the results of these compounds shall help us to understand the mechanism for the inhibition of hepatitis C virus.
關鍵字(中) ★ 香豆素
★ 腺苷
關鍵字(英) ★ Adenosine
★ Coumarins
論文目次 中文摘要 ............................................................................................................. i
英文摘要 ............................................................................................................ ii
謝誌 ................................................................................................................... iii
目錄 ................................................................................................................... iv
圖目錄 .................................................................................................................x
表目錄 ...............................................................................................................xii
縮寫對照表........................................................................................................xiii
一、 緒 論 ........................................................................................................ 1
二、 結 果 ........................................................................................................ 7
2-1製備具有不同官能基之coumarin-3-carboxylic chlorides (12a–d)..... 7
2-2製備2',3',5'-Tri-O-(tert-butyldimethylsilyl)adenosine (13)與3',5'-di-
O-(tert-butyldimethylsilyl)adenosine (14)………................................. 8
2-3合成3',5'-di-O-(tert-butyldimethylsilyl)-N6-(6'-coumarin-3'-carbonyl)
adenosine(15a–d) and 2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-
(6'-coumarin-3'-carbonyl)adenosine (15e–h) .......................................... 9
2-4合成2'-Deoxy-6-carbonyladenosine–coumarin conjugate (16a–b)
and 6-carbonyladenosine–coumarin conjugates (16c–d) .................... 12
2-5將產物15a–h 與17a–d進行分子模擬計算…….............................. 15
三、 討 論 ...................................................................................................... 18
3-1 分析6-Carbonyladenosine–coumarin conjugates and 2'-Deoxy-6-
carbonyladenosine–coumarin conjugate 化合物 (15a–h與17a–d).. 19
3-2 利用FT-IR研究產物15a–h之結構................................................. 20
3-3 利用利用UV-Vis測定產物16c與17c水溶性................................ 21
3-4 利用UV-Vis測定產物16c與17脂溶性........................................23
3-5 利用分子模擬計算討論產物16c能量與結構關係....................... 26
四、 結 論 ...................................................................................................... 28
五、 實 驗 部 分 .......................................................................................... 29
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-coumarin-3'-carbonyl) adenosine (15a)之合成............................................................................ 30
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-fluorocoumarin-3'-carbonyl) adenosine (15b)之合成............................................................................ 31
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-chlorocoumarin-3'-carbonyl) adenosine (15c)之合成............................................................................. 32
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-bromocoumarin-3'-carbonyl) adenosine (15d)之合成............................................................................ 32
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(coumarin-3'-carbonyl) adenosine (15e)之合成............................................................................. 33
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-fluorocoumarin-3'-carbonyl) adenosine (15f)之合成.............................................................................34
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-chlorocoumarin-3'-carbonyl)adenosine (15g)之合成.......................................................................... 34
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-bromocoumarin-3'-carbonyl)adenosine (15h)之合成.......................................................................... 35
N6-(6'-Bromocoumarin-3'-carbonyl)deoxyadenosine (17a)之合成..........37
N6-(6'-Cholocoumarin-3'-carbonyl)deoxyadenosine (17b)之合成...........38
N6-(6'-Bromocoumarin-3'-carbonyl)adenosine (17c)之合成................... 38
N6-(6'-Clorocoumarin-3'-carbonyl)adenosine (17d)之合成…….……... 39
六、 參 考 文 獻 .......................................................................................... 40
七、 光 譜 ...................................................................................................... 46
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-coumarin-3'-carbonyl) adenosine (15a) 1H NMR光譜................................................................ 47
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-coumarin-3'-carbonyl) adenosine (15a) 13C NMR光譜............................................................... 47
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-coumarin-3'-carbonyl) adenosine (15a) 紅外線光譜.................................................................. 48
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-fluorocoumarin-3'-carbonyl) adenosine (15b) 1H NMR光譜................................................................ 48
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-fluorocoumarin-3'-carbonyl) adenosine (15b) 13C NMR光譜............................................................... 49
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-fluorocoumarin-3'-
carbonyl)adenosine (15b) 紅外線光譜............................................. 49
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-chlorocoumarin-3'-
carbonyl)adenosine (15c) 1H NMR光譜............................................ 50
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-chlorocoumarin-3'-
carbonyl)adenosine (15c) 13C NMR光譜........................................... 50
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-chlorocoumarin-3'-
carbonyl)adenosine (15c) 紅外線光譜.............................................. 51
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-bromocoumarin-3'-
carbonyl)adenosine (15d) 1H NMR光譜........................................... 51
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-bromocoumarin-3'-
carbonyl)adenosine (15d) 13C NMR光譜.......................................... 52
3',5'-Di-O-(tert-butyldimethylsilyl)-N6-(6'-bromocoumarin-3'-
carbonyl)adenosine (15d) 紅外線光譜............................................. 52
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(coumarin-3'-
carbonyl)adenosine (15e) 1H NMR光譜............................................ 53
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(coumarin-3'-
carbonyl)adenosine (15e) 13C NMR光譜........................................... 53
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(coumarin-3'-
carbonyl)adenosine (15e) 紅外線光譜.............................................. 54
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-fluorocoumarin-3'-
carbonyl)adenosine (15f) 1H NMR光譜............................................ 54
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-fluorocoumarin-3'-
carbonyl)adenosine (15f) 13C NMR光譜........................................... 55
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-fluorocoumarin-3'-
carbonyl)adenosine (15f) 紅外線NMR光譜.................................... 55
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-chlorocoumarin-3'-
carbonyl)adenosine (15g) 1H NMR光譜............................................ 56
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-chlorocoumarin-3'-
carbonyl)adenosine (15g) 13C NMR光譜.......................................... 56
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-chlorocoumarin-3'-
carbonyl)adenosine (15g) 紅外線NMR光譜.................................... 57
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-bromocoumarin-3'-
carbonyl)adenosine (15h) 1H NMR光譜........................................... 57
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-bromocoumarin-3'-
carbonyl)adenosine (15h) 13C NMR光譜.......................................... 58
2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-(6'-bromocoumarin-3'-
carbonyl)adenosine (15h) 紅外線NMR光譜................................... 58
N6-(6'-Bromocoumarin-3'-carbonyl)deoxyadenosine (17a)
1H NMR光譜. ....................................................................................59
N6-(6'-Bromocoumarin-3'-carbonyl)deoxyadenosine (17a)
13C NMR光譜…................................................................................ 59
N6-(6'-Bromocoumarin-3'-carbonyl)deoxyadenosine (17a)
紅外線光譜….....................................................................................60 N6-(6'-Cholocoumarin-3'-carbonyl)deoxyadenosine (17b)
1H NMR光譜…..................................................................................60
N6-(6'-Cholocoumarin-3'-carbonyl)deoxyadenosine (17b)
13C NMR光譜….................................................................................61
N6-(6'-Cholocoumarin-3'-carbonyl)deoxyadenosine (17b)
紅外線光譜…....................................................................................61
N6-(6'-Bromocoumarin-3'-carbonyl)adenosine (17c) 1H NMR光譜….....62
N6-(6'-Bromocoumarin-3'-carbonyl)adenosine (17c) 13C NMR光譜…...62
N6-(6'-Bromocoumarin-3'-carbonyl)adenosine (17c) 紅外線光譜….......63
N6-(6'-Cholocoumarin-3'-carbonyl)adenosine (17d) 1H NMR光譜….....63
N6-(6'-Cholocoumarin-3'-carbonyl)adenosine (17d) 13C NMR光譜…....64
N6-(6'-Cholocoumarin-3'-carbonyl)adenosine (17d) 紅外線光譜…........64
圖 目 錄
Figure 1. C型肝炎病毒基因組………………………..………………..............1
Figure 2. 化合物進入人體之代謝與抑制作用..................................................6
Figure 3. 起始物14與化合物15化學位移部分疊圖..................................... 11
Figure 4. Zhu教授團隊合成結果......................................................................11
Figure 5. 比較(a)四級胺鹽在THF溶液下與(b)產物16的NMR圖譜.......... 13
Figure 6. 產物6-Bromocarbonyladenosine–coumarin 17c NMR光譜...........13
Figure 7. Ciuffreda P. 教授團隊compound 1, 5的NMR光譜資料 .............. 14
Figure 8. 產物6-Bromocarbonyladenosine–coumarin 17c NMR光譜........... 15
Figure 9. 產物6-Bromocarbonyladenosine–coumarin 17c 分子模擬圖.........16
Figure 10. 產物6-Carbonyladenosine–Coumarin 17平面結構及立體結構....18
Figure 11. 比較起始物11d、14b與產物15h、17c的NMR圖譜...................20
Figure 12. 產物2',3',5'-tri-O-(tert-Butyldimethylsilyl)-N6-(6'-bromocoumarin-
3'-carbonyl) adenosine 15h FT–IR光譜.........................................20
Figure 13. 產物2',3',5'-tri-O-(tert-Butyldimethylsilyl)-N6-(6'-bromocoumarin-
3'-carbonyl) adenosine 15h結構.....................................................21
Figure 14. 利用UV-Vis測定具鹽類化合物產物16c與產物17c的水溶性.. 22
Figure 15. 產物16c與產物17c的水溶性log值疊圖......................................23
Figure 16. 產物16c脂溶性檢量線圖...............................................................24
Figure 17. 產物17c的脂溶性檢量線圖...........................................................25
Figure 18. 產物16c與產物17c的脂溶性檢量線圖疊圖................................25
Figure 19. (a)構形a時的分子結構(b)構形c時的分子結構........................... 27
Figure 20. 1H NMR與最穩定狀態分子模擬圖對照圖....................................27
表 目 錄
Table 1. 尋找化合物15最佳反應條件...............................................................7
Table 2. 所有化合物的分子計算數據…………………................................. 15
Table 3. 分子計算時產物17c產生的構形能量.............................................. 21
參考文獻 1. Simmonds, P. Genetic diversity and evolution of hepatitis C virus – 15 years on. J. Gen. Virol. 2004, 85, 3173–3188.
2. Hoofnagle, J. H. Course and outcome of hepatitis C. Hepatology 2002, 36, S21–S29.
3. Lindenbach, B. D. Unravelling hepatitis C virus replication from genome to function. Nature 2005, 436, 933–938
4. Stephen M. F.; Albert Z. K.; Robert H. P.; Harvey J. A.; Paul V. H. Transfusion-Associated Hepatitis Not Due to Viral Hepatitis Type A or B. N. Engl. J. Med. 1975, 292, 767–770
5. Choo, Q.L.; Kuo G.; Weiner A. J.; Overbyl. R.; Bradley D.W.; Houghton M. Isolation of a cDNA Clone Derived from a Blood-Borne Non-A, Non-B Viral Hepatitis Genome. Science 1989, 244, 359–362
6. Drake J. W. and Holland J. J. Mutation rates among RNA viruses. Proceedings of the National Academy of Sciences, USA. 1999, 96, 13910–13913.
7. Steinhauer D. A.; Domingo E. and Holland J. J. Lack of evidence forproofreading mechanisms associated with an RNA virus polymerase. Gene 1992, 122, 281–288.
8. Simmonds P.; Holmes E. C.; Cha T. –A.; Chan S. –W.; McOmish F.; Irvine B.; Beall E.; Yap P. L.; Kolberg J. and Urdea M. S. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol 1993, 74, 2391–2399.
9. Pawlotasky J. –M. and Gish R. G. Future therapies for hepatitis C. Antiviral therapy 2006, 11, 397–408.
10. Hepatitis C:global prevalence. Wkly Epidemiol Rec. 1997, 72, 341–344.
11. Alter H. J. To C or Not To C :These Are the Question. Blood 1995, 85, 1681–1695.
12. Roingeard P. and Hourioux C. Hepatitis C virus core protein, lipid droplets and steatosis. J. Viral Hepat. 2008, 15, 157–164.
13. Lindsay K. L.; Trepo C.; Heintges T.; Shiffman M. L.; Gordon S. C.; Hoefs J. C.; Schiff. E. R.; Goodman Z. D.; Laughlin M.; Yao R.; Janice K. A Randomized, Double-Blind Trial Comparing Pegylated Interferon Alfa-2b to Interferon Alfa-2b as Initial Treatment for ChronicHepatitis C. Hepatology 2001, 34, 395–403.
14. De Francesco, R.; Tomei, L.; Altamura, S.; Summa, V.; Migliaccio, G. Approaching a new era for hepatitis C virus therapy: inhibitors of the NS3-4A serine protease and the NS5B RNA-dependent RNA polymerase. Antiviral Res. 2003, 58, 1–16.
15. Bretner, M. Existing and future therapeutic options for hepatitis C virus infection. Acta Biochim. Pol. 2005, 52, 57–70.
16. For a review, see: De Clercq, E. Nat. Rev. Drug Discovery 2007, 6, 1001–1018.
17. For a review, see: Manns, M. P.; Foster, G. R.; Rockstroh, J. K.; Zeuzem, S.; Zoulim, F.; Houghton, M. Nat. Rev. Drug Discovery 2007, 6, 991–1000.
18. Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the “Gatekeeper Door”: Exploiting the Active Kinase Conformation. J. Med. Chem. 2010, 53, 2681–2694.
19. Clercq, D. E.; Bergstrom, D. E.; Holy, A.; Montgomery, J. A. Broad-Spectrum Antiviral Activity of Adenosine Analogues. Antiviral Res. 1984, 4, 119–133.
20. Wu R.; Smidansky E. D.; Oh H. S.; Takhampunya R.; Padmanabhan R.; Cameron C. E.; Peterson B. R. Synthesis of a 6-Methyl-7-deaza Analogue of Adenosine That Potently Inhibits Replication of Polio and Dengue Viruses. J. Med. Chem. 2010, 53, 7958–7966
21. Aerschot A. A. V.; Mamos P.; Weyns N. J.; Ikeda S.; Clercq E. D.; and Herdewijn P.A. Antiviral Activity of C-Alkylated Purine Nucleosides Obtained by Cross-Coupling with Tetraalkyltin Reagents. J. Med. Chem. 1993, 36, 2938–2942.
22. Montgomery, J. and Hewson, K. Analogs of 6-Methyl-9-beta-D-ribofuranosylpurine. J. Med. Chem. 1968, 11, 48–52.
23. Olsen, D. B.; Eldrup, A. B.; Bartholomew, L.; Bhat, B.; Bosserman, M. R.; Ceccacci, A.; Colwell, L. F.; Fay, J. F.; Flores, O. A.; Getty, K. L. A 7-Deaza-Adenosine Analog is a Potent and Selective Inhibitor of Hepatitis C Virus Replication with Excellent Pharmacokinetic Properties. Antimicrob. Agents Chemother. 2004, 48, 3944–3953.
24. Andrzejewska, M.; Y′epez-Mulia, L.; Cedillo-Rivera, R.; Tapia, A.; Vilpo, L.; Vilpo, J.; Kazimierczuk, Z. Synthesis, antiprotozoal and anticancer activity of substituted 2-trifluoromethyl- and 2-pentafluoroethylbenzimidazoles. Eur. J. Med. Chem. 2002, 37, 973–978.
25. Gümüş, F.; Algül, Ö.; Eren, G.; Eroğlu, H.; Diril, N.; Gür, S.; Özkul. A. Synthesis, cytotoxic activity on MCF-7 cell line and mutagenic activity of platinum(II) complexes with 2-substituted benzimidazole ligands. Eur. J. Med. Chem. 2003, 38, 473–480.
26. Ito, C.; Itoigawa, M.; Mishina, Y.; Filho, V. C.; Enjo, F.; Tokuda, H.; Nishino, H.; Furukawa, H. Chemical constituents of Calophyllum brasiliense. 2. structure of three new coumarins and cancer chemopreventive activity of 4-substituted coumarins. J. Nat. Prod. 2003, 66, 368–371.
27. Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.; Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; Pinna, L. A.; Meggio, F.; Moro, S. Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure–activity relationships. J. Med. Chem. 2008, 51, 752–759.
28. Robert, S.; Bertolla, C.; Masereel, B.; Dogné, J. –M.; Pochet, L. Novel 3-carboxamide-
coumarins as potent and selective FXIIa inhibitors. J. Med. Chem. 2008, 51, 3077–3080.
29. Kamal, A.; Ramulu, P.; Srinivas, O.; Ramesh, G.; Kumar, P. P. Synthesis of C8-linked pyrrolo[2,1-c][1,4]benzodiazepinebenzimidazole conjugates with remarkable DNA-binding affinity. Bioorg. Med. Chem. Lett. 2004, 14, 4791–4794.
30. Chauhan, P. M. S.; Martins, C. J. A.; Horwell, D. C. Synthesis of novel heterocycles as anticancer agents. Bioorg. Med. Chem. 2005, 13, 3513–3518.
31. Demirayak, S.; Mohsen, U. A.; Karaburun, A. C. Synthesis and anticancer and anti-HIV testing of some pyrazino[1 2-a]benzimidazole derivatives. Eur. J. Med. Chem. 2002, 37, 255–260.
32. Garuti, L.; Roberti, M.; Malagoli, M.; Rossi, T.; Castelli, M. Synthesis and antiproliferative activity of some benzimidazole-4 7-dione derivatives. Bioorg. Med. Chem. Lett. 2000, 10, 2193–2195.
33. Lukevics, E.; Arsenyan, P.; Shestakova, I.; Domracheva, I.; Nesterova, A.; Pudova, O. Synthesis and antitumour activity of trimethylsilylpropyl substituted benzimidazoles. Eur. J. Med. Chem. 2001, 36, 507–515.
34. Handratta, V. D.; Vasaitis, T. S.; Njar, V. C. O.; Gediya, L. K.; Kataria, R.; Chopra, P.; Jr., Farquhar, R.; Guo, Z.; Qiu, Y.; Brodie, A. M. H. Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J. Med. Chem. 2005, 48, 2972–2984.
35. Curini, M.; Epifano, F.; Maltese, F.; Marcotullio, M.C.; Gonzales, S.P.; Rodriguez, J.C. Synthesis of collinin, an antiviral coumarin. Aust. J. Chem. 2003, 56, 59–60.
36. Bretner, M.; Baier, A.; Kopanska, K.; Najda, A.; Schoof, A.; Reinholz, M.; Lipniacki, A.; Piasek, A.; Kulikowsi, T.; Borowski, P. Synthesis and biological activity of 1H-benzotriazole and 1Hbenzimidazole analoguessinhibitors of the NTPase/helicase of HCV and of some related Flaviviridae. AntiViral Chem. Chemother. 2005, 16, 315–326.
37. Komazin, G.; Ptak, R. G.; Emmer, B. T.; Townsend, L. B.; Drach, J. C. Resistance of human cytomegalovirus to D- and L-Ribosyl benzimidazoles as a tool to identify potential targets for antiviral drugs. Nucleosides, Nucleotides Nucleic Acids 2003, 22, 1725–1727.
38. Beaulieu, P. L.; Bousquet, Y.; Gauthier, J.; Gillard, J.; Marquis, M.; McKercher, G.; Pellerein, C.; Valois, S.; Kukolj, G. Non-nucleoside benzimidazole-based allosteric inhibitors of the hepatitis C virus NS5B polymerase: inhibition of subgenomic hepatitis C virus RNA replicons in Huh-7 Cells. J. Med. Chem. 2004, 47, 6884–6892.
39. Beaulieu, P. L.; Bös, M.; Bousquet, Y.; DeRoy, P.; Fazal, G.; Gauthier, J.; Gillard, J., Goulet, S.; McKercher, G.; Poupart, M. –A.; Valois, S.; Kukolj, G. Non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase: discovery of benzimidazole 5-carboxylic amide derivatives with low-nanomolar potency. Bioorg. Med. Chem. Lett. 2004, 14, 967–971.
40. Ishida, T.; Suzuki, T.; Hirashima, S.; Mizutani, K.; Yoshida, A.; Ando, I.; Ikeda, S.; Adachi, T.; Hashimoto, H. Benzimidazole inhibitors of hepatitis C virus NS5B polymerase: identification of 2-[(4-diarylmethoxy) phenyl]-benzimidazole. Bioorg. Med. Chem. Lett. 2006, 16, 1859–1863.
41. Hwu, J. R.; Singha, R.; Hong, S. C.; Chang, Y. H.; Das, A. R.; Vliegen, I.; Clercq, E. D.; Neyts, J. Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents. Antiviral Res. 2008, 77, 157–162.
42. Neyts, J.; Clercq, E. D.; Singha, R.; Chang, Y. H.; Das, A. R.; Chakraborty, S. K.; Hong, S. C.; Tsay, S. –C.; Hsu, M. –H.; Hwu, J. R. Structure–activity relationship of new anti-hepatitis C virus agents: heterobicycle–coumarin conjugates. J. Med. Chem. 2009, 52, 1486–1490.
43. Chimenti F.; Secci D.; Bolasco A.; Chimenti P.; Bizzarri B.; Granese A.; Carradori S.; Yanez M.; Orallo F.; Ortuso F.; Alcaro S. Synthesis, Molecular Modeling, and Selective Inhibitory Activity against Human Monoamine Oxidases of 3-Carboxamido-7-Substituted Coumarins. J. Med. Chem. 2009, 52, 1935–1942.
44. Fisher M. G.; Gale P. A.; Light M. E. A simple benzimidazole-based receptor for barbiturate and urea neutral guests that functions in polar solvent mixtures. New J. Chem. 2007, 31, 1583–1942.
45. Zhou X.; Wang X. –B.; Wang T.; Kong L. –Y. Design, synthesis, and acetylcholinesterase inhibitory activity of novel coumarin analogues. Bioorg. Med. Chem. 2008, 16, 8011–8021.
46. Zhu X. –F.; Williams H. J.; Scott A. I. An Improved Transient Method for the Synthesis of N-Benzoylated Nucleosides. Syn Comm. 2003, 33, 1233–1243.
47. Chunga D. –H.; Strouseb J. J.; Suna Y.; Arterburnb J. B.; Parkera W. B.; Jonssonan C.B. Synthesis and anti-Hantaan virus activity of N1-3-fluorophenyl-inosine. Antiviral Res. 2009, 83, 80–85.
48. Jia Z.; Shen D.; Xu W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan Carbohydr. Res ,2001, 333, 1–6
49. Bookser B. C.; Ugarkar B. G.; Matelich M. C.; Lemus R. H.; Allan M.; Tsuchiya M.; Nakane M.; Nagahisa A.; Wiesner J. B.; Erion M. D. Adenosine Kinase Inhibitors. 6. Synthesis, Water Solubility, and Antinociceptive Activity of 5-Phenyl-7-(5-deoxy-â-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidines Substituted at C4 with Glycinamides and Related Compounds J. Med. Chem. 2005, 48, 7808-7820
50. Ciuffreda, P.; Casati, S.; Manzocchi, A. Complete 1H and 13C NMR spectral assignment of ?- and ?-adenosine, 2'-deoxyadenosine and their acetate derivatives. Magn. Reson. Chem. 2007, 45, 781–784.
51. (a) http://accelrys.com/ (b) http://www.molsci.com.tw/index.html
52. Nakanishi, K. and Solomon, P. H. Infrared Absorption Spectroscopy, 2nd ed.; Holden-Day: Oakland, CA, 1977; p 38.
53. Kuhn, B.; Mohr, P.; Stahl, M. Intramolecular hydrogen bonding in medicinal chemistry. J. Med. Chem. 2010, 53, 2601–2611.
54. Yan, F.; Cao, X. –X.; Jiang, H. -X.; Zhao, X. –L.; Wang, J. –Y.; Lin, Y. –H.; Liu, Q. –L.; Zhang, C.; Jiang, B.; Guo F. A Novel Water-Soluble Gossypol Derivative Increases Chemotherapeutic Sensitivity and Promotes Growth Inhibition in Colon Cancer. J. Med. Chem. 2010, 53, 5502–5510.
55. Kraszni, M.; Banyai, I.; Noszal, B. Determination of Conformer-Specific Partition Coefficients in Octanol/Water Systems. J. Med. Chem. 2003, 46, 2241–2245.
指導教授 胡紀如(Jih Ru Hwu) 審核日期 2011-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明