博碩士論文 982204003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.144.12.205
姓名 黃詠亭(Yung-Ting Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 調控小鼠脂肪細胞釋放阻抗素之訊息傳導路徑
(Effects of Distinct Signal Pathways on Resistin Release in Murine Adipocytes)
相關論文
★ PDE抑制劑與cAMP訊號傳導對類風濕性關節炎小鼠模型中CD4+ T細胞釋放IFN-g與IL-17A之調控★ PDE4和cAMP訊號傳導於小鼠骨髓細胞分化為樹突細胞之角色
★ 利用斑馬魚研究肝臟疾病和肝癌之發生:B型肝炎病毒X抗原,黃麴毒素,p53突變,src和edn1的致癌作用及其協同效應★ 環狀核苷酸磷酸二酯酶4對LPS/TLR4訊息傳導誘導小鼠巨噬細胞表現IFN-β的影響
★ 抑制環狀核苷酸磷酸二酯酶 3 (PDE3)對 3T3-L1 脂肪細胞內蛋白質表現之影響★ 環狀核苷酸磷酸二酯酶4B對小鼠樹突細胞分化與CXCR4表現之調控
★ 利用聚乙烯亞胺輸送環狀核苷酸磷酸二酯酶4B之專一性反義寡核苷酸可抑制LPS刺激小鼠巨噬細胞釋放TNF-α★ PDE4與PDE3抑制劑對膠原蛋白誘發DBA/1小鼠關節炎及釋放發炎激素IFN-γ與IL-17A的協同調控作用
★ 環狀核苷酸磷酸二酯酶4B對內毒素誘導巨噬細胞 產生IL-1Ra和樹突細胞表現TLRs之影響 及其對乾癬症生成之潛在角色★ 環狀核苷酸磷酸二脂酶4B對內毒素刺激小鼠樹突細胞表現NOD1與CXCR4的影響
★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults
★ Viscolin對不同免疫細胞發炎反應的影響★ 環狀腺苷單磷酸與其它訊息傳遞因子對脂肪細胞釋放阻抗素之影響
★ 環狀核苷酸磷酸二酯酶4B對於小鼠T細胞功能之調節★ 巨噬細胞中抑制PDE4對LPS誘導發炎反應之調控
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 阻抗素(resistin)是一種與胰島素抗性和能量平衡有關的脂肪素。研究指出, isoproterenol (ISO,一種β adrenergic receptor agonist)可降低3T3-L1脂肪細胞內resistin mRNA的表現量,但目前對於ISO是否會調控resistin的釋放以及其活化cAMP訊息傳導的機制仍不明瞭。本研究利用ELISA方法分析不同藥劑處理3T3-L1脂肪細胞或小鼠腹腔脂肪細胞對resistin釋放之影響。結果顯示ISO或forskolin皆可抑制兩種脂肪細胞對resistin的釋放,且ISO對resistin釋放的抑制作用可完全被PKA抑制劑Rp-8-CPT-cAMPS回復。進一步使用dibutyryl-cAMP (dbcAMP)處理3T3-L1脂肪細胞或小鼠腹腔脂肪細胞,結果顯示僅小鼠脂肪細胞的resistin釋放有明顯抑制作用。第三型環狀核苷酸磷酸二酯酶(PDE3)是脂肪細胞內降解cAMP的酵素,負責調節細胞內cAMP濃度及其訊息傳遞路徑。將cAMP類似物dbcAMP與PDE3抑制劑cilostazol共同處理3T3-L1脂肪細胞,可使resistin的釋放量明顯下降,PKA抑制劑能將此抑制作用完全回復。此外,我們發現利用PKA活化劑6-Bnz-cAMP處理兩種脂肪細胞可抑制resistin的釋放,而Epac活化劑8-pCPT-2'-O-Me-cAMP則無此作用。這些結果顯示,在脂肪細胞中cAMP抑制resistin釋放是經由活化PKA而非Epac路徑所致。本研究亦發現,TNF-alpha與PI3K抑制劑LY294002均可降低resistin的釋放,但其抑制作用不會被PKA抑制劑回復,顯示TNF-alpha與PI3K抑制劑的抑制作用不是經由活化PKA訊息傳導所致。再者,本研究利用胰島素刺激3T3-L1脂肪細胞以活化PI3K,結果顯示其對resistin的釋放無顯著影響,然而胰島素會阻斷LY294002對resistin的抑制作用,使resistin釋放回升,由此我們推測當PI3K被抑制時,胰島素可經由活化其他路徑以增加resistin的釋放。我們也發現,AMPK促進劑AICAR與AMPK抑制劑Compound C皆會抑制脂肪細胞釋放resistin,此不相容結果之原因仍不甚明瞭。綜合本研究結果,脂肪細胞釋放resistin可被多種訊息傳遞路徑及分子所調控,包括cAMP/PDE3/PKA、PI3K、TNF-alpha?receptor及AMPK等。
摘要(英) Resistin is an adipokine which is implicated in adipogenesis, insulin resistance, and inflammation. Its mRNA expression in mouse adipocytes is demonstated to be down-regulated by the cAMP-elevating agent isoproterenol (ISO), a β-adrenergic receptor agonist, but the mechanism underlying this cAMP signaling remains undefined. In this study, treatment of mouse primary and 3T3-L1 adipocytes with ISO, revealed that the resistin release was significantly reduced. Additionally, this response was reversed by the PKA inhibitor Rp-8-CPT-cAMPS. This decrease in the resistin release was mimicked by the treatment of the cells with the PKA activator 6-Bnz-cAMP, whereas the Epac activator 8-pCPT-2’’-O-Me-cAMP did not alter the resistin release. These results indicated that the PKA activation mediates the ISO/cAMP-induced reduction of resistin release. The resistin release was also significantly suppressed when 3T3-L1 adipocytes were incubated with a combination of the cAMP-specific phosphodiestrase PDE3 inhibitor cilostazol and dibutyryl-cAMP (dbcAMP). Like the ISO-induced signaling, this decrease was also reversed by the PKA inhibitor, indicating that the decrease of resistin release by dbcAMP and PDE3 inhibitor is also mediated by PKA activation. Treatment of adipocytes with TNF-alpha and PI3K inhibitor LY294002 also showed a significant decrease in resistn release, but such effect was not reversed by the PKA inhibitor, suggesting that signal pathways other than cAMP signaling are involved in resistin production. Moreover, insulin alone was found no effect on resistin release in 3T3-L1 adipocytes, but it could block the inhibitory effect of PI3K inhibitor, suggesting that a PI3K-independent pathway may mediate the insulin action. Taken together, these results demonstrated that in mouse adipocytes the resistin release is regulated by distinct signal pathways including cAMP/PDE3/PKA, TNF-alpha?receptor, and PI3K signaling.
關鍵字(中) ★ 腫瘤壞死因子
★ 脂肪細胞
★ 環狀核苷酸磷酸二酯酶
★ 環狀腺苷單磷酸
★ 磷酸肌醇三激酶
★ 阻抗素
關鍵字(英) ★ adipocyte
★ PI3K
★ TNF-alpha
★ resistin
★ cAMP
★ PDE
論文目次 目錄
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
縮寫檢索表 vii
第一章 緒論 1
1-1 脂肪組織 1
1-2 阻抗素(Resistin) 1
1-2-1 Resistin的發現 1
1-2-2 Resistin的分子特性 2
1-2-3 Resistin表現與釋放的調控 2
1-3 cAMP與脂肪細胞 3
1-4 cAMP訊息傳導路徑 4
1-5 環狀核苷酸磷酸二酯酶(Cyclic nucleotide phosphodiesterases;PDE) 5
1-6 PDE3家族 6
1-7 cAMP與Resistin 7
1-8 AMP-activated protein kinase (AMPK) 7
第二章 研究動機與目的 9
第三章 材料與方法 11
3-1 材料 11
3-1-1 實驗小鼠 11
3-1-2 細胞株 11
3-1-3 實驗藥材 11
3-2 方法 12
3-2-1 3T3-L1細胞培養 12
3-2-2 3T3-L1細胞分化 12
3-2-3 3T3-L1脂肪細胞的處理 13
3-2-4 分離小鼠初代脂肪細胞 13
3-2-5 小鼠初代脂肪細胞的處理 14
3-2-6 細胞萃取液之製備 14
3-2-7 蛋白質定量 15
3-2-8 PDE酵素活性檢測 15
3-2-9 酵素免疫分析法(Enzyme-linked immunosorbent assay,ELISA) 16
第四章 實驗結果 17
4-1 cAMP訊息傳導對脂肪細胞釋放resistin之影響 17
4-1-1 Isoproterenol、forskolin和dibutyryl-cAMP對3T3-L1脂肪細胞釋放resistin之影響 17
4-1-2 Isoproterenol、forskolin和dibutyryl-cAMP對小鼠初代脂肪細胞釋放resistin之影響 17
4-1-3 cAMP訊息傳導路徑與脂肪細胞釋放resistin之關係 18
4-1-4 PDE與cAMP 類似物dbcAMP對脂肪細胞釋放resistin之影響 18
4-1-5 Dibutyryl-cAMP和cilostazol對脂肪細胞釋放resistin之訊息傳導 19
4-2 Tumor Necrosis Factor-alpha (TNF-a)對脂肪細胞釋放resistin之影響 20
4-3 PI3K對脂肪細胞釋放resistin之影響 20
4-4 AMP-activated protein kinase (AMPK)對脂肪細胞釋放resistin之影響 21
4-5 Isoproterenol、dibutyryl-cAMP和resistin對3T3-L1脂肪細胞內PDE活性之影響 22
第五章 討論 24
5-1 cAMP訊息傳導對脂肪細胞釋放resistin之影響 24
5-2 TNF-alpha對脂肪細胞釋放resistin之影響 27
5-3 PI3K對脂肪細胞釋放resistin之影響 27
5-4 AMP-activated protein kinase (AMPK)對脂肪細胞釋放resistin之影響 29
第六章 圖與圖解 30
參考文獻 41
附錄 49
圖目錄
圖一、cAMP調節劑對脂肪細胞釋放resistin之影響 30
圖二、PKA活化劑、Epac活化劑和PKA抑制劑對ISO抑制脂肪細胞釋放resistin之影響 31
圖三、dbcAMP和cilostazol對脂肪細胞釋放resistin之影響 32
圖四、dbcAMP和cilostazol共同處理不同時間對脂肪細胞釋放resistin之影響 33
圖五、dbcAMP和cilostazol共同處理對3T3-L1脂肪細胞釋放resistin之影響 34
圖六、cilostazol和dbcAMP抑制脂肪細胞釋放resistin之訊息傳導路徑 35
圖七、TNF-?對脂肪細胞釋放resistin的抑制作用並非藉由PKA之活化 36
圖八、胰島素對脂肪細胞釋放resistin之影響 37
圖九、PI3K抑制劑對脂肪細胞釋放resistin之抑制作用不被PKA所調控 38
圖十、AMPK活性對3T3-L1脂肪細胞釋放resistin之影響 39
圖十一、Isoproterenol、dbcAMP和resistin對3T3-L1脂肪細胞內PDE活性之影響 40
參考文獻 [1] G.J. Hausman, Anatomical and enzyme histochemical differentiation of adipose tissue, International journal of obesity 9 Suppl 1 (1985) 1-6.
[2] M.E. Vazquez-Vela, N. Torres, A.R. Tovar, White adipose tissue as endocrine organ and its role in obesity, Archives of medical research 39 (2008) 715-728.
[3] C.M. Steppan, S.T. Bailey, S. Bhat, E.J. Brown, R.R. Banerjee, C.M. Wright, H.R. Patel, R.S. Ahima, M.A. Lazar, The hormone resistin links obesity to diabetes, Nature 409 (2001) 307-312.
[4] C.M. Steppan, E.J. Brown, C.M. Wright, S. Bhat, R.R. Banerjee, C.Y. Dai, G.H. Enders, D.G. Silberg, X. Wen, G.D. Wu, M.A. Lazar, A family of tissue-specific resistin-like molecules, Proceedings of the National Academy of Sciences of the United States of America 98 (2001) 502-506.
[5] L. Patel, A.C. Buckels, I.J. Kinghorn, P.R. Murdock, J.D. Holbrook, C. Plumpton, C.H. Macphee, S.A. Smith, Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators, Biochemical and biophysical research communications 300 (2003) 472-476.
[6] K.H. Kim, K. Lee, Y.S. Moon, H.S. Sul, A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation, The Journal of biological chemistry 276 (2001) 11252-11256.
[7] I.N. Holcomb, R.C. Kabakoff, B. Chan, T.W. Baker, A. Gurney, W. Henzel, C. Nelson, H.B. Lowman, B.D. Wright, N.J. Skelton, G.D. Frantz, D.B. Tumas, F.V. Peale, Jr., D.L. Shelton, C.C. Hebert, FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family, The EMBO journal 19 (2000) 4046-4055.
[8] R.R. Banerjee, M.A. Lazar, Dimerization of resistin and resistin-like molecules is determined by a single cysteine, The Journal of biological chemistry 276 (2001) 25970-25973.
[9] D.B. Savage, C.P. Sewter, E.S. Klenk, D.G. Segal, A. Vidal-Puig, R.V. Considine, S. O’’Rahilly, Resistin / Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans, Diabetes 50 (2001) 2199-2202.
[10] K.M. Utzschneider, D.B. Carr, J. Tong, T.M. Wallace, R.L. Hull, S. Zraika, Q. Xiao, J.S. Mistry, B.M. Retzlaff, R.H. Knopp, S.E. Kahn, Resistin is not associated with insulin sensitivity or the metabolic syndrome in humans, Diabetologia 48 (2005) 2330-2333.
[11] F. Haugen, A. Jorgensen, C.A. Drevon, P. Trayhurn, Inhibition by insulin of resistin gene expression in 3T3-L1 adipocytes, FEBS letters 507 (2001) 105-108.
[12] N. Shojima, H. Sakoda, T. Ogihara, M. Fujishiro, H. Katagiri, M. Anai, Y. Onishi, H. Ono, K. Inukai, M. Abe, Y. Fukushima, M. Kikuchi, Y. Oka, T. Asano, Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells, Diabetes 51 (2002) 1737-1744.
[13] J. Kawashima, K. Tsuruzoe, H. Motoshima, A. Shirakami, K. Sakai, Y. Hirashima, T. Toyonaga, E. Araki, Insulin down-regulates resistin mRNA through the synthesis of protein(s) that could accelerate the degradation of resistin mRNA in 3T3-L1 adipocytes, Diabetologia 46 (2003) 231-240.
[14] Q. Zhong, C.Y. Lin, K.J. Clarke, R.J. Kemppainen, D.D. Schwartz, R.L. Judd, Endothelin-1 inhibits resistin secretion in 3T3-L1 adipocytes, Biochemical and biophysical research communications 296 (2002) 383-387.
[15] K. Choi, Y.B. Kim, Molecular mechanism of insulin resistance in obesity and type 2 diabetes, The Korean journal of internal medicine 25 (2010) 119-129.
[16] C.L. Carpenter, B.C. Duckworth, K.R. Auger, B. Cohen, B.S. Schaffhausen, L.C. Cantley, Purification and characterization of phosphoinositide 3-kinase from rat liver, The Journal of biological chemistry 265 (1990) 19704-19711.
[17] H. Song, N. Shojima, H. Sakoda, T. Ogihara, M. Fujishiro, H. Katagiri, M. Anai, Y. Onishi, H. Ono, K. Inukai, Y. Fukushima, M. Kikuchi, H. Shimano, N. Yamada, Y. Oka, T. Asano, Resistin is regulated by C/EBPs, PPARs, and signal-transducing molecules, Biochemical and biophysical research communications 299 (2002) 291-298.
[18] Y.H. Chen, M.J. Lee, H.H. Chang, P.F. Hung, Y.H. Kao, 17 beta-estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor, extracellularly regulated kinase, and CCAAT/enhancer binding protein-alpha pathways, Endocrinology 147 (2006) 4496-4504.
[19] G.S. Hotamisligil, N.S. Shargill, B.M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance, Science 259 (1993) 87-91.
[20] M. Fasshauer, J. Klein, S. Neumann, M. Eszlinger, R. Paschke, Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes, Biochemical and biophysical research communications 288 (2001) 1027-1031.
[21] S.E. Mills, C.Y. Liu, Sensitivity of lipolysis and lipogenesis to dibutyryl-cAMP and beta-adrenergic agonists in swine adipocytes in vitro, Journal of animal science 68 (1990) 1017-1023.
[22] T. Kitamura, Y. Kitamura, S. Kuroda, Y. Hino, M. Ando, K. Kotani, H. Konishi, H. Matsuzaki, U. Kikkawa, W. Ogawa, M. Kasuga, Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt, Molecular and cellular biology 19 (1999) 6286-6296.
[23] T. Szkudelski, E. Nowicka, K. Szkudelska, Leptin secretion and protein kinase A activity, Physiological research / Academia Scientiarum Bohemoslovaca 54 (2005) 79-85.
[24] L. Cong, K. Chen, J. Li, P. Gao, Q. Li, S. Mi, X. Wu, A.Z. Zhao, Regulation of adiponectin and leptin secretion and expression by insulin through a PI3K-PDE3B dependent mechanism in rat primary adipocytes, The Biochemical journal 403 (2007) 519-525.
[25] K. Tasken, E.M. Aandahl, Localized effects of cAMP mediated by distinct routes of protein kinase A, Physiological reviews 84 (2004) 137-167.
[26] J.W. Zhang, D.J. Klemm, C. Vinson, M.D. Lane, Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis, The Journal of biological chemistry 279 (2004) 4471-4478.
[27] J. de Rooij, F.J. Zwartkruis, M.H. Verheijen, R.H. Cool, S.M. Nijman, A. Wittinghofer, J.L. Bos, Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP, Nature 396 (1998) 474-477.
[28] T. Shibasaki, H. Takahashi, T. Miki, Y. Sunaga, K. Matsumura, M. Yamanaka, C. Zhang, A. Tamamoto, T. Satoh, J. Miyazaki, S. Seino, Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP, Proceedings of the National Academy of Sciences of the United States of America 104 (2007) 19333-19338.
[29] R.K. Petersen, L. Madsen, L.M. Pedersen, P. Hallenborg, H. Hagland, K. Viste, S.O. Doskeland, K. Kristiansen, Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes, Molecular and cellular biology 28 (2008) 3804-3816.
[30] S.P. Kim, J.M. Ha, S.J. Yun, E.K. Kim, S.W. Chung, K.W. Hong, C.D. Kim, S.S. Bae, Transcriptional activation of peroxisome proliferator-activated receptor-gamma requires activation of both protein kinase A and Akt during adipocyte differentiation, Biochemical and biophysical research communications 399 (2010) 55-59.
[31] S.T. Wong, K. Trinh, B. Hacker, G.C. Chan, G. Lowe, A. Gaggar, Z. Xia, G.H. Gold, D.R. Storm, Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice, Neuron 27 (2000) 487-497.
[32] T. Kurahashi, K.W. Yau, Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells, Nature 363 (1993) 71-74.
[33] A.T. Bender, J.A. Beavo, Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use, Pharmacological reviews 58 (2006) 488-520.
[34] C. Lugnier, Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents, Pharmacology & therapeutics 109 (2006) 366-398.
[35] S.H. Francis, M.A. Blount, J.D. Corbin, Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions, Physiological reviews 91 (2011) 651-690.
[36] W. Richter, M. Conti, The oligomerization state determines regulatory properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases, The Journal of biological chemistry 279 (2004) 30338-30348.
[37] W. Richter, M. Conti, Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs), The Journal of biological chemistry 277 (2002) 40212-40221.
[38] M.D. Houslay, Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown, Trends in biochemical sciences 35 (2010) 91-100.
[39] D.H. Maurice, R.J. Haslam, Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP, Molecular pharmacology 37 (1990) 671-681.
[40] Y. Shakur, K. Takeda, Y. Kenan, Z.X. Yu, G. Rena, D. Brandt, M.D. Houslay, E. Degerman, V.J. Ferrans, V.C. Manganiello, Membrane localization of cyclic nucleotide phosphodiesterase 3 (PDE3). Two N-terminal domains are required for the efficient targeting to, and association of, PDE3 with endoplasmic reticulum, The Journal of biological chemistry 275 (2000) 38749-38761.
[41] R. He, N. Komas, D. Ekholm, T. Murata, M. Taira, S. Hockman, E. Degerman, V.C. Manganiello, Expression and characterization of deletion recombinants of two cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE-3), Cell biochemistry and biophysics 29 (1998) 89-111.
[42] E. Degerman, P. Belfrage, V.C. Manganiello, Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3), The Journal of biological chemistry 272 (1997) 6823-6826.
[43] X. Zhang, G.B. Carey, Plasma membrane-bound cyclic AMP phosphodiesterase activity in 3T3-L1 adipocytes, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 137 (2004) 309-316.
[44] Y.H. Choi, S. Park, S. Hockman, E. Zmuda-Trzebiatowska, F. Svennelid, M. Haluzik, O. Gavrilova, F. Ahmad, L. Pepin, M. Napolitano, M. Taira, F. Sundler, L. Stenson Holst, E. Degerman, V.C. Manganiello, Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice, The Journal of clinical investigation 116 (2006) 3240-3251.
[45] A. Oknianska, E. Zmuda-Trzebiatowska, V. Manganiello, E. Degerman, Long-term regulation of cyclic nucleotide phosphodiesterase type 3B and 4 in 3T3-L1 adipocytes, Biochemical and biophysical research communications 353 (2007) 1080-1085.
[46] M. Fasshauer, J. Klein, S. Neumann, M. Eszlinger, R. Paschke, Isoproterenol inhibits resistin gene expression through a G(S)-protein-coupled pathway in 3T3-L1 adipocytes, FEBS letters 500 (2001) 60-63.
[47] V.E. Chaves, D. Frasson, N.H. Kawashita, Several agents and pathways regulate lipolysis in adipocytes, Biochimie 93 (2011) 1631-1640.
[48] J.R. Arch, The beta 3-adrenergic system and beta 3-adrenergic agonists, Reviews in endocrine & metabolic disorders 2 (2001) 385-393.
[49] H. Liu, D.H. Maurice, Expression of cyclic GMP-inhibited phosphodiesterases 3A and 3B (PDE3A and PDE3B) in rat tissues: differential subcellular localization and regulated expression by cyclic AMP, British journal of pharmacology 125 (1998) 1501-1510.
[50] E. Degerman, C.J. Smith, H. Tornqvist, V. Vasta, P. Belfrage, V.C. Manganiello, Evidence that insulin and isoprenaline activate the cGMP-inhibited low-Km cAMP phosphodiesterase in rat fat cells by phosphorylation, Proceedings of the National Academy of Sciences of the United States of America 87 (1990) 533-537.
[51] T. Rahn Landstrom, J. Mei, M. Karlsson, V. Manganiello, E. Degerman, Down-regulation of cyclic-nucleotide phosphodiesterase 3B in 3T3-L1 adipocytes induced by tumour necrosis factor alpha and cAMP, The Biochemical journal 346 Pt 2 (2000) 337-343.
[52] D.G. Hardie, Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease, FEBS letters 582 (2008) 81-89.
[53] D. Carling, The AMP-activated protein kinase cascade--a unifying system for energy control, Trends in biochemical sciences 29 (2004) 18-24.
[54] B. Viollet, F. Andreelli, AMP-activated protein kinase and metabolic control, Handbook of experimental pharmacology (2011) 303-330.
[55] B. Kola, M. Boscaro, G.A. Rutter, A.B. Grossman, M. Korbonits, Expanding role of AMPK in endocrinology, Trends in endocrinology and metabolism: TEM 17 (2006) 205-215.
[56] A.S. Lihn, N. Jessen, S.B. Pedersen, S. Lund, B. Richelsen, AICAR stimulates adiponectin and inhibits cytokines in adipose tissue, Biochemical and biophysical research communications 316 (2004) 853-858.
[57] H. Sell, D. Dietze-Schroeder, K. Eckardt, J. Eckel, Cytokine secretion by human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone, Biochemical and biophysical research communications 343 (2006) 700-706.
[58] C.M. Steppan, M.A. Lazar, Resistin and obesity-associated insulin resistance, Trends in endocrinology and metabolism: TEM 13 (2002) 18-23.
[59] I. Gabriely, X.H. Ma, X.M. Yang, G. Atzmon, M.W. Rajala, A.H. Berg, P. Scherer, L. Rossetti, N. Barzilai, Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process?, Diabetes 51 (2002) 2951-2958.
[60] H. Green, M. Meuth, An established pre-adipose cell line and its differentiation in culture, Cell 3 (1974) 127-133.
[61] H. Green, O. Kehinde, An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion, Cell 5 (1975) 19-27.
[62] F.M. Gregoire, C.M. Smas, H.S. Sul, Understanding adipocyte differentiation, Physiological reviews 78 (1998) 783-809.
[63] M. Reichert, D. Eick, Analysis of cell cycle arrest in adipocyte differentiation, Oncogene 18 (1999) 459-466.
[64] R.C. Honnor, G.S. Dhillon, C. Londos, cAMP-dependent protein kinase and lipolysis in rat adipocytes. I. Cell preparation, manipulation, and predictability in behavior, The Journal of biological chemistry 260 (1985) 15122-15129.
[65] M. Rodbell, Metabolism of Isolated Fat Cells. I. Effects of Hormones on Glucose Metabolism and Lipolysis, The Journal of biological chemistry 239 (1964) 375-380.
[66] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent, The Journal of biological chemistry 193 (1951) 265-275.
[67] S.L. Jin, M. Conti, Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses, Proceedings of the National Academy of Sciences of the United States of America 99 (2002) 7628-7633.
[68] S.L. Jin, L. Lan, M. Zoudilova, M. Conti, Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages, Journal of immunology 175 (2005) 1523-1531.
[69] R. Yanai, N. Yamada, M. Inui, T. Nishida, Correlation of proliferative and anti-apoptotic effects of HGF, insulin, IGF-1, IGF-2, and EGF in SV40-transformed human corneal epithelial cells, Experimental eye research 83 (2006) 76-83.
[70] J.W. Scott, S.A. Hawley, K.A. Green, M. Anis, G. Stewart, G.A. Scullion, D.G. Norman, D.G. Hardie, CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations, The Journal of clinical investigation 113 (2004) 274-284.
[71] M.S. Gauthier, H. Miyoshi, S.C. Souza, J.M. Cacicedo, A.K. Saha, A.S. Greenberg, N.B. Ruderman, AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance, The Journal of biological chemistry 283 (2008) 16514-16524.
[72] W. Yin, J. Mu, M.J. Birnbaum, Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis In 3T3-L1 adipocytes, The Journal of biological chemistry 278 (2003) 43074-43080.
[73] C.M. Steppan, J. Wang, E.L. Whiteman, M.J. Birnbaum, M.A. Lazar, Activation of SOCS-3 by resistin, Molecular and cellular biology 25 (2005) 1569-1575.
[74] S.P. Davies, H. Reddy, M. Caivano, P. Cohen, Specificity and mechanism of action of some commonly used protein kinase inhibitors, The Biochemical journal 351 (2000) 95-105.
[75] S.Y. Park, J.H. Lee, K.Y. Kim, E.K. Kim, S.J. Yun, C.D. Kim, W.S. Lee, K.W. Hong, Cilostazol increases 3T3-L1 preadipocyte differentiation with improved glucose uptake associated with activation of peroxisome proliferator-activated receptor-gamma transcription, Atherosclerosis 201 (2008) 258-265.
[76] S.Y. Park, H.K. Shin, J.H. Lee, C.D. Kim, W.S. Lee, B.Y. Rhim, K.W. Hong, Cilostazol ameliorates metabolic abnormalities with suppression of proinflammatory markers in a db/db mouse model of type 2 diabetes via activation of peroxisome proliferator-activated receptor gamma transcription, The Journal of pharmacology and experimental therapeutics 329 (2009) 571-579.
[77] P. Engfeldt, P. Arner, J. Ostman, Nature of the inhibitory effect of collagenase on phosphodiesterase activity, Journal of lipid research 26 (1985) 977-981.
[78] P. Engfeldt, P. Arner, J. Ostman, Influence of adipocyte isolation by collagenase on phosphodiesterase activity and lipolysis in man, Journal of lipid research 21 (1980) 443-448.
[79] J.S. Hayes, L.L. Brunton, S.E. Mayer, Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1, The Journal of biological chemistry 255 (1980) 5113-5119.
[80] G. McConnachie, L.K. Langeberg, J.D. Scott, AKAP signaling complexes: getting to the heart of the matter, Trends in molecular medicine 12 (2006) 317-323.
[81] K.L. Dodge, S. Khouangsathiene, M.S. Kapiloff, R. Mouton, E.V. Hill, M.D. Houslay, L.K. Langeberg, J.D. Scott, mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module, The EMBO journal 20 (2001) 1921-1930.
[82] C. Kurlawalla-Martinez, B. Stiles, Y. Wang, S.U. Devaskar, B.B. Kahn, H. Wu, Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue, Molecular and cellular biology 25 (2005) 2498-2510.
[83] R. Rea, R. Donnelly, Effects of metformin and oleic acid on adipocyte expression of resistin, Diabetes, obesity & metabolism 8 (2006) 105-109.
[84] K.N. Phoenix, F. Vumbaca, M.M. Fox, R. Evans, K.P. Claffey, Dietary energy availability affects primary and metastatic breast cancer and metformin efficacy, Breast cancer research and treatment 123 (2010) 333-344.
[85] G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, D.E. Moller, Role of AMP-activated protein kinase in mechanism of metformin action, The Journal of clinical investigation 108 (2001) 1167-1174.
[86] T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase, Nature medicine 8 (2002) 1288-1295.
[87] H. Satoh, M.T. Nguyen, P.D. Miles, T. Imamura, I. Usui, J.M. Olefsky, Adenovirus-mediated chronic "hyper-resistinemia" leads to in vivo insulin resistance in normal rats, The Journal of clinical investigation 114 (2004) 224-231.
[88] J. Bain, L. Plater, M. Elliott, N. Shpiro, C.J. Hastie, H. McLauchlan, I. Klevernic, J.S. Arthur, D.R. Alessi, P. Cohen, The selectivity of protein kinase inhibitors: a further update, The Biochemical journal 408 (2007) 297-315.
[89] B. Omar, E. Zmuda-Trzebiatowska, V. Manganiello, O. Goransson, E. Degerman, Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis, Cellular signalling 21 (2009) 760-766.
[90] R.F. Morrison, S.R. Farmer, Hormonal signaling and transcriptional control of adipocyte differentiation, The Journal of nutrition 130 (2000) 3116S-3121S.
指導教授 金秀蓮(S.-L. Catherine Jin) 審核日期 2012-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明