參考文獻 |
Alonso, J.M. and Ecker, J.R. (2001). The Ethylene Pathway: A Paradigm for Plant Hormone Signaling and Interaction. Sci. STKE. 70:1-10.
Cai, H., Reinisch, K., Ferro-Novick, S. (2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Developmental Cell. 12: 671-682.
Chen, G.H., Liu, C.P., Grace Chen, S.C., Wang, L.C. (2011). Role of ARABIDOPSIS A-FIFTEEN in regulating leaf senescence involves response to reactive oxygen species and is dependent on ETHYLENE INSENSITIVE2. Journal of Experimental Botany. 10.1093/jxb/err278:1-18.
Christians, M.J., Gingerich, D.J. Hansen, M., Binder. B.M., Kieber, J.J. Vierstra, R.D. (2009). The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant Journal. 57:332-345.
Conibear, E., Cleck, J.N., Stevens, T.H. (2003). Vps51p Mediates the Association of the GARP (Vps52/53/54) Complex with the Late Golgi t-SNARE Tlg1p. Mol Biol Cell. 14: 1610–1623.
Conibear, E. and Stevens, T.H. (2000). Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell. 11: 305–323.
Desprez, T., Juraniec, M., Crowell, E.F., Jouy, H., Pochylova, Z., Parcy, F., Hofte, H., Gonneau, M., Vernhettes, S. (2007). Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. PNAS. 104:15572-15577.
Engelberth, M.J. and Engelberth, J. (2009). Monitoring Plant Hormones During Stress Responses. Journal of Visualized Experiments. 28:1127.
Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., McCann, M., Rayon, C., Vernhettes, S., Hofte. H. (2000). PROCUSTE1 Encodes a Cellulose Synthase Required for Normal Cell Elongation Specifically in Roots and Dark-Grown Hypocotyls of Arabidopsis. The Plant Cell. 12:2409-2423.
Feraru, E., Paciorek, T., Feraru, M.I., Zwiewka, M., Groodt, R.D., Rycke, R.D., Kleine-Vehn, J., Friml, J. (2010). The AP-3 β Adaptin Mediates the Biogenesis and Function of Lytic Vacuoles in Arabidopsis. The Plant Cell. 22:2812-2824.
Guermonprez, H., Smertenko, A., Crosnier, M.T., Durandet, M., Vrielynck, N., Guerche, P., Hussey, P.J., Satiat-Jeunemaitre, B., Bonhomme, S. (2008). The POK/AtVPS52 protein localizes to several distinct post-Golgi compartments in sporophytic and gametophytic cells. Journal of Experimental Botany. 59:3087-3098.
Guzman, P. and Ecker, J.R. (1990). Exploiting the Triple Response of Arabídopsís To ldentify Ethylene-Related Mutants. The Plant Cell. 2:513-523.
Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M. Last, R.L. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 129: 440-450
Kajiura, H., Koiwa, H., Nakazawa, Y., Okazawa, A., Kobayashi, A., Seki, T., Fujiyama, K. (2009). Two Arabidopsis thaliana Golgi α-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiology. 20:235-247.
Lee, C.F., Pu, H.Y., Wang, L.C., Sayler, R.J., Yeh, C.H., Wu, S.J. (2006). Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta. 224:330-338.
Levine, A. (2002). Regulation of stress responses by intracellular vesicle trafficking. Plant Physiol. Biochem. 40:531–535.
Lin, Z., Zhong, S., Grierson, D. (2009). Recent advances in ethylene research. Journal of Experimental Botany. 60:3311-3336.
Liu, J.X., Srivastava, R., Che, P., Howell, S.H. (2007). An Endoplasmic Reticulum Stress Response in Arabidopsis Is Mediated by Proteolytic Processing and Nuclear Relocation of a Membrane-Associated Transcription Factor, bZIP28. The Plant Cell. 19:4111-4119.
Lobstein, E., Guyon, A., Férault, M., Twell, D., Pelletier, G., Bonhomme, S. (2004). The Putative Arabidopsis Homolog of Yeast Vps52p Is Required for Pollen Tube Elongation, Localizes to Golgi, and Might Be Involved in Vesicle Trafficking. Plant Physiology. 135:1480-1490.
Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., Iba, K., (2000). Trienoic fatty acids and plant tolerance of high temperature. Science. 287: 476–479.
Nelson, B.K., Cai, X., Nebenfu, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal. 51:1126-1136.
Quenneville, N.R., Chao, T.Y., McCaffery, J.M., Conibear, E. (2006). Domains within the GARP Subunit Vps54 Confer Separate Functions in Complex Assembly and Early Endosome Recognition. Molecular Biology of the Cell. 17:1859-1870.
Roberts, A.W. and Bushoven, J.T. (2006). The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens. Plant Molecular Biology. 63:207-219.
Rutkowski, D.T. and Kaufman, R.J. (2004). A trip to the ER: coping with stress. Trends in Cell Biology. 14:20-28.
Rogalski, M. and Carrer, H. (2011). Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. Plant Biotechnology Journal. 9:554-564.
Rothman, J.E. (1994). Mechanisms of intracellular protein transport. Nature. 3;372(6501):55-63.
Saint-Jore-Dupas, C., Nebenführ, A., Boulaflous, A., Follet-Gueye, M.L., Plasson, C., Hawes, C., Driouich, A., Faye. L., Gomord, V. (2006). Plant N-Glycan Processing Enzymes Employ Different Targeting Mechanisms for Their Spatial Arrangement along the Secretory Pathway. The Plant Cell. 18:3182-3200.
Saito, C., Ueda, T., Abe, H., Wada, Y., Kuroiwa, T., Hisada, A., Furuya, M., Nakano, A. (2002). A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. The Plant Journal. 29:245-255.
Persson, S., Paredez, A., Andrew Carroll, A., Palsdottir, H., Monika Doblin, M., Poindexter, P., Khitrov, N., Auer, M., Somerville, C.R. (2007). Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. PNAS. 104:15566-15571.
Simoes-Araujo, J.L., Rumjanek, N.G., Margis-Pinheiro, M. (2003). Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Plant Physiol. 15:33-41.
Sebastian Springer, S., Spang, A., Schekman, R. (1999). A Primer on Vesicle Budding. Cell. 97:145-148.
Steinwand, B.J., Kieber, J.J. (2010). The Role of Receptor-Like Kinases in Regulating Cell Wall Function. Plant Physiology. 153:479-484.
Surpin, M. and Raikhel, N. (2004). Traffic jams affect plant development and signal transduction. Nature Reviews Molecular Cell Biology. 5:100-109.
Sztul, E. and Lupashin, V. (2006). Role of tethering factors in secretory membrane traffic. Am J Physiol cell Physiol. 290:11-26.
Thelen, J.J. and Ohlrogge, J.B. (2002). Metabolic Engineering of Fatty Acid Biosynthesis in Plants. Metabolic Engineering. 4:12–21.
Urade, R. (2007). Cellular response to unfolded proteins in the endoplasmic reticulum of plants. FEBS Journal. 274: 1152-1171.
Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany. 61:199-223.
Wang, J., Elliott, J.E., Williamson, R.E. (2008). Features of the primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana. Journal of Experimental Botany. 59:2627-2637.
Wang, L.C., Tsai, M.C., Chang, K.Y., Fan, Y.S., Yeh, C.H., Wu, S.J. (2011) Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Journal of Experimental Botany. 62:3609-3620.
Wu, S.J., Wang, L.C., Yeh, C.H., Lu, C.A., Wu, S.J. (2010). Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. New Phytologist. 186:833-842.
Zhang, J.H., Huang, W.D., Liu, Y.P., Pan, Q.H. (2005). Effects of temperature
acclimation pretreatment on the ultrastructure of mesophyll cells in young
grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. Journal of Integrative Plant Biology. 47:959-970.
|