博碩士論文 982204013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.225.31.159
姓名 范育珊(Yu-Shan Fan)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位
(Involvement of Arabidopsis HIT1 in the preservation of endomembrane integrity under stress conditions and the mapping of Arabidopsis ret8 locus)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位
★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究
★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現
★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究
★ 蛋白質法尼脂化修飾參與植株耐熱反應★ 探討ETO1-LIKE1(EOL1)及EOL2參與阿拉伯芥幼苗光形態發育之功能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) hit1-1 (heat intolerant 1-1) 是對熱具過度敏感性的阿拉伯芥突變株,HIT1蛋白質經過序列比對分析發現,與酵母菌的Vps53p為同源性蛋白質,在酵母菌中Vps53p會與Vps51p、Vps52p和Vps54p共同形成一個囊泡繫鏈複合體,稱為Golgi-associated retrograde protein (GARP) complex,負責調節從內膜體逆行回高基氏體的囊泡運輸,而在阿拉伯芥中,HIT1也會與AtVPS52及AtVPS54形成囊泡繫鏈複合體。因此當HIT1突變後,造成植物對熱的過度敏感性,可能是由於缺乏了有效的囊泡運輸,致使hit1-1突變株面臨高溫環境時,無法及時修補或替換膜組成,抑或是HIT1的突變,使得細胞膜本身的組成就已被改變,造成對熱的不耐受性。繫鏈因子的功能對於囊泡運輸的過程非常重要,所以繫鏈因子的突變,除了會影響細胞膜之外,也可能會影響其他內膜系統,因此,在阿拉伯芥中表達了幾個胞器的螢光標記:endoplasmic reticulum (ER)、Golgi及vacuole接黃螢光蛋白 (YFP);plasma membrane (PM) 接櫻桃色螢光蛋白 (mCherry) 等,利用這些螢光轉殖株來進行實驗及螢光顯微鏡的觀察。
乙烯是常見的植物賀爾蒙,參與調控植物的生長發育和抵抗環境逆境的機制。為了更詳細了解與乙烯相關的生理反應和調控機制,利用化學遺傳法,使用小分子化合物7303干擾乙烯的反應,其主要的結構為喹唑啉酮,可以有效的抑制ethylene overproducer 1 (eto1) 白化苗的三相反應,因此,利用這個特性來挑選突變株,而突變株的外表型還可以像eto1一樣具有三相反應,所以挑選出來的突變株被命名為revert to eto1 (ret),在本篇論文中,利用map-based cloning (MBC) 的方法,對挑選出的其中一株突變株revert to eto1 8 (ret8) 進行基因定位的工作,而ret8突變基因在AGI map第五條染色體25870.8 kb~25906.5 kb之間,35.7 kb的範圍內。
摘要(英) Arabidopsis hit1-1 is a heat-intolerant mutant. The HIT1 gene was found to encode a protein with homology to yeast Vps53p, which is a subunit of the Golgi-associated retrograde protein (GARP) complex. The tethering complex includes Vps51p, Vps52p and Vps54p, that is involved in retrograde trafficking of vesicles to the Golgi. hit1-1 is hypersensitivity to heat stress may be due to the loss plasma membrane integrity caused by ineffective vesicle recycling. When a tethering factor lost the function not only plasma membrane but also endomembrane may be affected. To test this hypothesis, various transgenic Arabidopsis lines expressing YFP-tagged reporter of the Golgi, endoplasmic reticulum (ER), vacuole and mCherry-tagged reporter of plasma membrane (PM) were generated. These transgenic plants allow us to monitor and compare morphological changes of various endomembrane compartments in both wild type and hit1-1 mutant.
Ethylene is a gaseous phytohormone. It is involved in regulation of many aspects of plant growth and development. To gain more understanding about ethylene biology, we used small molecules (hit compounds) to screen Arabidopsis mutants, named revert to etol (ret), with restoration of the ethylene overproducer 1 (eto1) phenotype (triple response) in the presence of hit compounds. One of the ret mutants, ret8, which was identified from Arabidopsis after ethyl-methane sulfonate (EMS) –mutagenesis. To identify the gene underlying the ret8 phenotype, map-based cloning of RET8 gene is being conducted.
關鍵字(中) ★ 囊泡繫鏈因子
★ 內膜系統
★ 基因定位
★ 阿拉伯芥
關鍵字(英) ★ Vesicle tethering factor
★ map-based cloning
★ Endomembrane
★ Arabidopsis thaliana
論文目次 中文摘要 I
ABSTRACT II
目錄 III
圖表目錄 V
前言 1
一、 囊泡繫鏈因子HIT1在逆境下參與維持內膜完整性之探討 1
二、 阿拉伯芥ret8之基因定位 6
材料與方法 9
一、囊泡繫鏈因子HIT1在逆境下參與維持內膜完整性之探討 9
1. 植物材料及生長方式 9
1-1. 植物材料 9
1-2. 植物生長培養基 9
1-3. 種子消毒與生長環境 9
2. 建立organelle markers轉基因之植株 9
2-1. 農桿菌勝任細胞之製備 9
2-2. 農桿菌之轉型 10
2-3. 阿拉伯芥轉殖與篩選 11
2-4. 建立hit1-1螢光轉殖株 12
2-5. 雙螢光轉殖株 13
3. 測試熱處理後hit1-1之內膜系統有無受到影響 13
3-1. 幼苗 (Seeding) 13
3-2. 原生質體 (protoplast) 14
4. NaCl對於hit1-1生長表現型之影響測試 16
4-1. 幼苗成熟率 (Seeding maturation) 16
4-2. 根長測量 16
5. 利用質壁分離 (plasmolysis) 的方式觀察Col與hit1-1的細胞膜有無差異 16
二、阿拉伯芥ret8之基因定位 17
1. 植物材料及生長方式 17
1-1. 植物材料 17
1-2. 植物生長培養基 17
1-3. 種子消毒與生長環境 17
2. ret8突變種之位址定位 18
2-1. 挑選定位之突變株 18
2-2. 阿拉伯芥基因體之萃取方法 18
2-3. 以分子標記 (DNA molecular markers) 定位 19
結果 22
一、囊泡繫鏈因子HIT1在逆境下對內膜系統之影響 22
二、阿拉伯芥ret8之基因定位 26
討論 28
一、囊泡繫鏈因子HIT1在逆境下對內膜系統之影響 28
二、ret8之突變基因為CESA6 31
參考文獻 33
參考文獻 Alonso, J.M. and Ecker, J.R. (2001). The Ethylene Pathway: A Paradigm for Plant Hormone Signaling and Interaction. Sci. STKE. 70:1-10.
Cai, H., Reinisch, K., Ferro-Novick, S. (2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Developmental Cell. 12: 671-682.
Chen, G.H., Liu, C.P., Grace Chen, S.C., Wang, L.C. (2011). Role of ARABIDOPSIS A-FIFTEEN in regulating leaf senescence involves response to reactive oxygen species and is dependent on ETHYLENE INSENSITIVE2. Journal of Experimental Botany. 10.1093/jxb/err278:1-18.
Christians, M.J., Gingerich, D.J. Hansen, M., Binder. B.M., Kieber, J.J. Vierstra, R.D. (2009). The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant Journal. 57:332-345.
Conibear, E., Cleck, J.N., Stevens, T.H. (2003). Vps51p Mediates the Association of the GARP (Vps52/53/54) Complex with the Late Golgi t-SNARE Tlg1p. Mol Biol Cell. 14: 1610–1623.
Conibear, E. and Stevens, T.H. (2000). Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell. 11: 305–323.
Desprez, T., Juraniec, M., Crowell, E.F., Jouy, H., Pochylova, Z., Parcy, F., Hofte, H., Gonneau, M., Vernhettes, S. (2007). Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. PNAS. 104:15572-15577.
Engelberth, M.J. and Engelberth, J. (2009). Monitoring Plant Hormones During Stress Responses. Journal of Visualized Experiments. 28:1127.
Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., McCann, M., Rayon, C., Vernhettes, S., Hofte. H. (2000). PROCUSTE1 Encodes a Cellulose Synthase Required for Normal Cell Elongation Specifically in Roots and Dark-Grown Hypocotyls of Arabidopsis. The Plant Cell. 12:2409-2423.
Feraru, E., Paciorek, T., Feraru, M.I., Zwiewka, M., Groodt, R.D., Rycke, R.D., Kleine-Vehn, J., Friml, J. (2010). The AP-3 β Adaptin Mediates the Biogenesis and Function of Lytic Vacuoles in Arabidopsis. The Plant Cell. 22:2812-2824.
Guermonprez, H., Smertenko, A., Crosnier, M.T., Durandet, M., Vrielynck, N., Guerche, P., Hussey, P.J., Satiat-Jeunemaitre, B., Bonhomme, S. (2008). The POK/AtVPS52 protein localizes to several distinct post-Golgi compartments in sporophytic and gametophytic cells. Journal of Experimental Botany. 59:3087-3098.
Guzman, P. and Ecker, J.R. (1990). Exploiting the Triple Response of Arabídopsís To ldentify Ethylene-Related Mutants. The Plant Cell. 2:513-523.
Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M. Last, R.L. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 129: 440-450
Kajiura, H., Koiwa, H., Nakazawa, Y., Okazawa, A., Kobayashi, A., Seki, T., Fujiyama, K. (2009). Two Arabidopsis thaliana Golgi α-mannosidase I enzymes are responsible for plant N-glycan maturation. Glycobiology. 20:235-247.
Lee, C.F., Pu, H.Y., Wang, L.C., Sayler, R.J., Yeh, C.H., Wu, S.J. (2006). Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant. Planta. 224:330-338.
Levine, A. (2002). Regulation of stress responses by intracellular vesicle trafficking. Plant Physiol. Biochem. 40:531–535.
Lin, Z., Zhong, S., Grierson, D. (2009). Recent advances in ethylene research. Journal of Experimental Botany. 60:3311-3336.
Liu, J.X., Srivastava, R., Che, P., Howell, S.H. (2007). An Endoplasmic Reticulum Stress Response in Arabidopsis Is Mediated by Proteolytic Processing and Nuclear Relocation of a Membrane-Associated Transcription Factor, bZIP28. The Plant Cell. 19:4111-4119.
Lobstein, E., Guyon, A., Férault, M., Twell, D., Pelletier, G., Bonhomme, S. (2004). The Putative Arabidopsis Homolog of Yeast Vps52p Is Required for Pollen Tube Elongation, Localizes to Golgi, and Might Be Involved in Vesicle Trafficking. Plant Physiology. 135:1480-1490.
Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., Iba, K., (2000). Trienoic fatty acids and plant tolerance of high temperature. Science. 287: 476–479.
Nelson, B.K., Cai, X., Nebenfu, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal. 51:1126-1136.
Quenneville, N.R., Chao, T.Y., McCaffery, J.M., Conibear, E. (2006). Domains within the GARP Subunit Vps54 Confer Separate Functions in Complex Assembly and Early Endosome Recognition. Molecular Biology of the Cell. 17:1859-1870.
Roberts, A.W. and Bushoven, J.T. (2006). The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens. Plant Molecular Biology. 63:207-219.
Rutkowski, D.T. and Kaufman, R.J. (2004). A trip to the ER: coping with stress. Trends in Cell Biology. 14:20-28.
Rogalski, M. and Carrer, H. (2011). Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. Plant Biotechnology Journal. 9:554-564.
Rothman, J.E. (1994). Mechanisms of intracellular protein transport. Nature. 3;372(6501):55-63.
Saint-Jore-Dupas, C., Nebenführ, A., Boulaflous, A., Follet-Gueye, M.L., Plasson, C., Hawes, C., Driouich, A., Faye. L., Gomord, V. (2006). Plant N-Glycan Processing Enzymes Employ Different Targeting Mechanisms for Their Spatial Arrangement along the Secretory Pathway. The Plant Cell. 18:3182-3200.
Saito, C., Ueda, T., Abe, H., Wada, Y., Kuroiwa, T., Hisada, A., Furuya, M., Nakano, A. (2002). A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. The Plant Journal. 29:245-255.
Persson, S., Paredez, A., Andrew Carroll, A., Palsdottir, H., Monika Doblin, M., Poindexter, P., Khitrov, N., Auer, M., Somerville, C.R. (2007). Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. PNAS. 104:15566-15571.
Simoes-Araujo, J.L., Rumjanek, N.G., Margis-Pinheiro, M. (2003). Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Plant Physiol. 15:33-41.
Sebastian Springer, S., Spang, A., Schekman, R. (1999). A Primer on Vesicle Budding. Cell. 97:145-148.
Steinwand, B.J., Kieber, J.J. (2010). The Role of Receptor-Like Kinases in Regulating Cell Wall Function. Plant Physiology. 153:479-484.
Surpin, M. and Raikhel, N. (2004). Traffic jams affect plant development and signal transduction. Nature Reviews Molecular Cell Biology. 5:100-109.
Sztul, E. and Lupashin, V. (2006). Role of tethering factors in secretory membrane traffic. Am J Physiol cell Physiol. 290:11-26.
Thelen, J.J. and Ohlrogge, J.B. (2002). Metabolic Engineering of Fatty Acid Biosynthesis in Plants. Metabolic Engineering. 4:12–21.
Urade, R. (2007). Cellular response to unfolded proteins in the endoplasmic reticulum of plants. FEBS Journal. 274: 1152-1171.
Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany. 61:199-223.
Wang, J., Elliott, J.E., Williamson, R.E. (2008). Features of the primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana. Journal of Experimental Botany. 59:2627-2637.
Wang, L.C., Tsai, M.C., Chang, K.Y., Fan, Y.S., Yeh, C.H., Wu, S.J. (2011) Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Journal of Experimental Botany. 62:3609-3620.
Wu, S.J., Wang, L.C., Yeh, C.H., Lu, C.A., Wu, S.J. (2010). Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. New Phytologist. 186:833-842.
Zhang, J.H., Huang, W.D., Liu, Y.P., Pan, Q.H. (2005). Effects of temperature
acclimation pretreatment on the ultrastructure of mesophyll cells in young
grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. Journal of Integrative Plant Biology. 47:959-970.
指導教授 吳少傑(Shaw-Jye Wu) 審核日期 2012-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明