博碩士論文 982204025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.133.12.172
姓名 葉雨欣(Yu-hsin Yeh)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析
(Analysis for characterization of the promoter of PaCOL2,A flowering-related gene in Phalaenopsis amabilis.)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
★ 植物逆境蛋白質基因啟動子與功能分析★ 植物受溫度調控之基因的功能與機制分析
★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析
★ 受熱與ABA調控基因AtRZFP33之生理功能分析★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析
★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析
★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用
★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 阿拉伯芥中已發現四條主要控制開花機制的途徑:吉貝素、自發性途徑、春化作用和光週期等途徑。蝴蝶蘭主要受到光週期和溫度調控開花,因此為研究蝴蝶蘭的開花機制,我們針對蝴蝶蘭中一個開花相關基因,PaCOL2 (Phalaenopsis amabilis CONSTANS-LIKE 2) 進行深入研究。在胺基酸序列分析顯示有兩個常出現於阿拉伯芥CO高度保留性的片段 (CCT domain和B-box zinc finger),在洋蔥表皮細胞內分布位置分析結果顯示PaCOL2全長 (PaCOL2-GFP) 和刪除B-box zinc finger之PaCOL2 (PaCOL2△B-box-GFP) 表現於細胞核中,另外刪除CCT domain之PaCOL2 (PaCOL2△CCT-GFP) 則分布於整個細胞質中,因此推測CCT domain對於PaCOL2在核中表現相當重要。
對PaCOL2啟動子分析結果得知其含有一個與基因受低溫調控有關之ABREL (ABA response element-like;CACGTGT) 和一個與受基因光週期調控有關聯之EE (evening element; AAAATATCT)。接著利用阿拉伯芥原生質體暫時表現系統分析PaCOL2啟動子受誘導情形,結果顯示PaCOL2啟動子在19小時的黑暗處理,可達最高表現量,但持續光照則會抑制基因表現。另外,我們亦在PaCOL2啟動子3’端接上GUS基因,利用農桿菌轉殖到阿拉伯芥,經過適當篩選及確認後,得到2株轉殖株 (PaCOL2p),藉GUS表現情形進行PaCOL2啟動子調控機制之分析進行。結果顯示PaCOL2主要表現在葉及根部的维管束組織、心皮、萼片和花絲亦有表現;誘導表現結果顯示PaCOL2p轉植株在黑暗時有最高活性情況,並且呈現生理韻律現象。
進一步探討EE在PaCOL2啟動子區域的功能,我們建構了2個PaCOL2啟動子突變的阿拉伯芥植株,包含2株刪除PaCOL2啟動子的EE轉殖株 (PaCOL2p△EE) 和2株全長PaCOL2啟動子黏合4個EE轉殖株 (PaCOL2p-4EE)進行分析。在正常光照週期下PaCOL2p-4EE突變株之啟動子活性高於PaCOL2p。同時PaCOL2pΔEE突變株之啟動子活性失去生理韻律現象,因此推測EE調控PaCOL2表現之生理韻律現象。最後,為探討ABREL在PaCOL2啟動子區域的功能,我們建構了2株全長PaCOL2啟動子黏合3個ABREL之轉殖株進行分析。研究顯示當溫度降低時,PaCOL2p-3ABREL轉殖株之啟動子活性反而增加,但PaCOL2p轉殖株之啟動子活性則無改變,因此推測在低溫處理下,ABREL的套數對PaCOL2之受誘導表現中扮演重要角色。
摘要(英) In Arabidopsis, flowering mechanism is regulated by four major pathways: gibberellins, autonomous, vernalization, and photoperiod. Orchids usually flower after short-day or cold treatment. To study the flowering mechanism of orchids, we focused on characterizing a flowering-related gene, PaCOL2 (Phalaenopsis amabilis CONSTANS-LIKE 2). In amino acid sequence, PaCOL2 had two distinct domains CCT and B-box zinc finger, which were also observed in AtCO. Analysis for subcellular localization of PaCOL2, PaCOL2△CCT and PaCOL2△B-box, indicated that PaCOL2 and PaCOL2△B-box localized in nucleus but PaCOL2△CCT distributed in cytoplasm, which suggested that CCT domain was important for the nucleus-localization of PaCOL2.
Two elements were identified in the PaCOL2 promoter region, one was ABREL (ABA response element-like;CACGTGT), which was related to the activation by low temperature and the other was EE (evening element; AAAATATCT), which was related to the regulation by photoperiod. We used Arabidopsis protoplast transient expression system to analyze the PaCOL2 promoter. We found that PaCOL2 promoter showed the highest induction level after 19 h of dark treatment but was inhibited under constant light treatment. On the other hand, the promoter region of PaCOL2 were fused at the 5’-upstream of GUS gene and introduced into Arabidopsis plants via Agrobacterium mediated transformation. After selection and confirmation, we gained two PaCOL2 transgenic Arabidopsis plants (PaCOL2p3-5 and PaCOL2p4-6) to characterize PaCOL2 promoter. The results indicated that PaCOL2 promoter was activated in the vascular tissue of leaves and roots, carpel, sepals, and filaments. We also found that the activity of PaCOL2p promoter showed circadian rhythm. The highest induction of PaCOL2p promoter was in dark period.
To study the role of EE in the PaCOL2 promoter region, we constructed PaCOL2 promoter variants in transgenic plants. Two EE truncation of PaCOL2 promoter plants (PaCOL2ΔEE) and two full length of PaCOL2 promoter with 4 copies of EE plants (PaCOL2p-4EE) were used to analyze the functions of the cis-elements. The results revealed that PaCOL2p-4EE showed higher activation than that of PaCOL2p. In addition, activation of PaCOLp2ΔEE was not regulated by circadian rhythm, which suggested that EE played an important role in the circadian expression of PaCOL2. Furthermore, we constructed two full length of PaCOL2 promoter with 3 copies of ABREL transgenic plants (PaCOL2p-3ABREL) to analyze the role of ABREL. We found that PaCOL2p-3ABREL was significantly activated under cold treatment, wherease PaCOL2p did not show cold responsiveness. It suggested that the copy number of ABREL was important for the induction of PaCOL2 under cold condition.
關鍵字(中) ★ 蝴蝶蘭 關鍵字(英) ★ Phalaenopsis amabilis
論文目次 目錄
摘要…………………………………………………………………………………………..….III
Abstract………………………………………………………………………………………....IV
縮寫對照表………………………………………………………………………………….….VII
壹、 緒論………………………………………………………………………………….....…. 1
開花植物生長階段: 由營養狀態轉變至繁殖狀態………………………………….…...1
影響開花時間之外在環境………………………………………………………….…..…..1
貳、 文獻探討……………………………………………………………………………..…….5
參、 材料與方法……………………………………………………………………………..….9
PaCOL2蛋白質在細胞中的表現位置……………………………………………………...9
阿拉伯芥農桿菌轉殖………………………………………………………………….…14
阿拉伯芥轉殖株的分析……………………………………………………………….…17
蝴蝶蘭基因表現分析…………………………………………………………….……….18
原生質體暫時表現系統……………………………………………………………….…20
轉殖株之處理與GUS活性 (GUS activity) 的分析……………………………….…..23
肆、 結果…………………………………………………………………………………..…..…24
PaCOL2在細胞中的表現位置…………………………………………………………….24
PaCOL2在蝴蝶蘭 (Phalaenopsis amabilis) 中的表現部位……………………………..24
以阿拉伯芥原生質體暫時表現系統進行PaCOL2啟動子分析…………………….……25
以阿拉伯芥轉殖株表現系統進行PaCOL2啟動子分析…………………………….……27
伍、 討論…………………………………………………………………………………………34
PaCOL2-GFP結合蛋白質表現在細胞核中……………………………………………….34
PaCOL2表現在營養器官和繁殖器官……………………………………...……………. 35
PaCOL2啟動子之分析…………………………………………………………………..35
PaCOL2、AtCO和AtCOL1之分析…………………...………………………………….38
未來研究方向………………………………………………………………………………39
陸、 參考文獻……………………………………………………………………………………40
柒、 圖表…………………………………………………………………………………………47
圖一、PaCOL2表現於洋蔥表皮的細胞核…………..………………………………..47
圖二、蝴蝶蘭 (Phalaenopsis amabilis) 不同部位組織的PaCOL2基因表現情形…….48
圖三、PaCOL2p3-5的各組織和不同生長發育時期進行GUS染色…………………… 49
圖四、阿拉伯芥轉殖株genomic DNA PCR的鑑定……………………………………..50
圖五、PaCOL2和AtCO啟動子轉殖到阿拉伯芥於原生質體細胞中在處裡不同光強度的表現情形………………………………………………………………………………….51
圖六、PaCOL2和AtCO啟動子轉殖到阿拉伯芥於原生質體細胞中的表現情形………52
圖七、EE在PaCOL2啟動子的重要性……………………………………………….53
圖八、光照週期處理PaCOL2p轉殖株GUS activity的表現情形…………………….54
圖九、光照週期處理PaCOL2p轉殖株GUS activity的表現情形……………………..55
圖十、低溫處理PaCOL2p轉殖株GUS activity的表現情形……………………56
圖十一、光照週期處理PaCOL2pΔEE轉殖株GUS activity的表現情形..…….57
圖十二、光照週期處理PaCOL2p-4EE轉殖株GUS activity的表現情形……..58
圖十三、低溫處理PaCOL2pΔEE轉殖株GUS activity的表現情形……………59
圖十四、低溫處理PaCOL2p-4EE轉殖株GUS activity的表現情形…..………60
圖十五、光照週期處理PaCOL2p-3ABREL轉殖株GUS activity的表現情..…61
圖十六、低溫處理PaCOL2-3ABREL轉殖株GUS activity的表現情形……….62
捌、 附錄…………………………………………………………………………………………63
參考文獻 Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K. and Araki, T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052-1056.
An, H., Roussot, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Hepworth, S., Mouradov, A., Justin, S. and Turnbull, C. (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131: 3615-3626.
Alabadi, D., Yanovsky, M.J., Mas, P., Harmer, S.L. and Kay, S.A. (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr. Biol. 12: 757-761.
Ayre, B.G. and Turgeon, R. (2004) Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol. 135: 2271-2278.
Ben-Naim, O., Eshed, R., Parnis, A., Teper-Bamnolker, P., Shalit, A., Coupland, G., Samach, A. and Lifschitz, E. (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J. 46: 462-476.
Bernier, G. and Perilleux, C. (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol. J. 31: 3-16.
Blazquez, M. (2000) Flower development pathways. J.Cell Sci. 113: 3547-3548.
Birve, A., Sengupta, A.K., Beuchle, D., Larsson, J., Kennison, J.A., Rasmuson-Lestander, A. and Muller, J. (2001). Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development 128, 3371–3379.
Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S. and Zhang, Y. (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043.
Carre, I.A. and Kay, S.A. (1995) Multiple DNA-protein complexes at a circadian regulated promoter element. Plant Cell 7: 2039–2051
Choi, S.K., Olsen, D.S., Roll-Mecak ,A., Martung, A., Remo, K.L., Burley, S.K., Hinnebusch, A.G. and Dever, T.E. (2000) Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. Mol. Cell. Biol., 20: 7183-7191.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L. and Turnbull, C. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030-1033.
Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A. and Pirrotta, V. (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111: 185–196.
David, A.L. (1997) Comparative genetics of flowering time. Plant Mol. Biol. 35: 167-177.
Fowler, S.G., Cook, D. and Thomashow, M.F. (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 137: 961-968
Gardner, M.J., Hubbard, K.E., Hotta, C.T., Dodd, A.N. and Webb, A.A. (2006) How plants tell the time. Biochem. J. 397: 15-24
Gendall, A.R., Levy, Y.Y., Wilson, A. and Dean, C. (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107: 525–535.
Griffiths, S., Dunford, R.P., Coupland, G. and Laurie, D.A. (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 131: 1855–1867.
Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A. and Kay, S.A. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290: 2110–2113.
Harmera, S.L. and Kayb, S.A. (2005) Positive and negative factors confer
phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17: 1926-1940
He, Y. and Amasino R.M. (2005) Role of chromatin modification in flowering-time control. Trends Plant Sci. 10: 30-35.
Helliwell, C. A., Wood C.C., Robertson, M., James, P.W. and Dennis E.S. (2006) The Arabidopsis FLC protein interacts directlyin vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 46: 183-192.
Jaeger, K.E. and Wigge, P.A. (2007) FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17: 1050–1054.
Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T. and Parcy, F. (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7: 106-111.
Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. and Thomashow, M.F. (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances frezing tolerance. Science 280: 104-106
Kim, S.J., Moon, J., Lee, I., Maeng, J. and Kim, S.R. (2003) Molecular cloning and expression analysis of a CONSTANS homologue, PnCOL1, from Pharbitis nil. J Exp Bot 54: 1879–1887.
Kizis, D. and Pages, M. (2002) Maize DRE-binding proteins DBF1 and DBF2 are
involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30: 679–689
Lang, V., Mantyla, E., Welin, B., Sundberg, B. and Palva, E.T. (1994) Alterations in water status, endogenous abscisic acid content and expression of rabZ8 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104 1341-1349.
Lee, J.H., Hong, S.M., Yoo, S.J., Park, O.K., Lee, J.S. and Ahn, J.H. (2006) Integration of floral inductive signals by FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1. Physiol Plant 126: 475–483.
Levy, Y.Y. and Dean, C. (1998) The transition to flowering. Plant Cell 10: 1974-1998.
Levy, Y.Y., Meanage, S., Mylne, J.S., Gensall, A.R. and Dean, C. (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowerimg time control. Science. 297: 243-246.
Ledger, S., Strayer, C., Ashton, F., Kay, S.A. and Putterill, J. (2001) Analysis of
the function of two circadian-regulated CONSTANS-LIKE genes. Plant J. 26: 15–22.
Mantyla, E., Lang, V. and Palva, E.T. (1995) Role of Abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol 107: 141-148
Matsushika, A., Makino, S., Kojima, M. and Mizuno, T. (2000). Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41: 1002-1012.
Maruyama, K., Todaka, D., Mizoi, J., Yoshida, T., Kidokoro, S., Matsukura, S., Takasaki, H., Sakurai, T., Yamamoto Y.Y., Yoshiwara, K., Kojima, M., Sakakibara, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2011) Identification of cis-acting promoter element in cold- and dehydration- induced transcriptional pathways in Arabidopsis, rice and soybean. DNA research 19: 37-49.
McClung, C.R. (2006) Plant circadian rhythms. Plant Cell 18:792-803
Michael, T.P. and McClung, C.R. (2002) Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol 130: 627–638
Michael, T.P. and McClung, C.R. (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol 132: 629-39
Mikkelsen, M. D. and Thomashow, M.F. (2009) A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J. 60: 328-339
Muller, J., Hart, C.M., Francis, N.J., Vargas, M.L., Sengupta, A., Wild, B., Miller, E.L., O’Connor, M.B., Kingston, R.E. and Simon, J.A. (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197–208
Nakamichi, N., Kita, M., Ito, S., Sato, E., Yamashino, T. and Mizuno, T. (2005) The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essntial roles for circadian clock function. Plant Cell Physiol 46: 609-619.
Nakashima, K., Fujita, Y., Katsura, K., Maruyama, K., Narusaka, Y., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embroys, and seedings of Arabidopsis. Plant Mol. Biol. 60: 51-68
Onouchi, H., Igeno, M.I., Perilleux, C., Graves, K. and Coupland, G. (2000) Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis floweringtime genes. Plant Cell 12, 885-900.
Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G. (1995) The CONSTANS gene of Arabidopsis promoter flowering and encodes a protein showing similarities to zinc-finger transcription factoes. Cell. 80: 847-857.
Robson, F., Costa, M.M.R., Hepworth, S.R., Vizir, I., Pineiro, M., Reeves, P.H. Putterill, J. and Coupland, G. (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J. 28: 619-631.
Salome, P.A., To, J.P.C., Kieber, J.J. and McClung, C.R. (2006) Arabidopsis response regulators ARR3 and ARR4 play cytokinine independent roles in the control of circadian period. Plant Cell 18: 55-69.
Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F. and Coupland, G. (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616
Shearman, L.P., Sriram, S., Weaver, D.R., Maywood, E.S., Chaves, I., Zheng, B., Kume, K., Lee, C.C., van der Horst, G.T. and Hastings, M.H. (2000) Interacting Molecular Loops in the Mammalian Circadian Clock. Science 288: 1013-1019
Shimizu, M., Ichikawa, K. and Aoki, S. (2004) Photoperiod-regulated expression of the PpCOL1 gene encoding a homolog of CO/COL proteins in the moss Physcomitrella patens. Biochem. Biophys. Res. Commun. 324: 1296-1301
Simpson, G.G. and Dean, C. (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296, 285–289
Staiger, D. and Apel, K. (1999) Circadian clock-regulated expression of an RNA-binding protein in Arabidosis: characterisation of a minimal promoter element. Mol.Gen. Genet. 261: 811-819
Strayer, C., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Mas, P., Panda, S., Kreps, J.A. and Kay, S.A. (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science. 289: 768-771
Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. and Coupland, G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116–1120
Sung, S. and Amasino, R.M. (2004) Vernalization and epigenetics: how plants remember winter. Curr. Opin. Plant Biol. 7: 4-10
Suzuki, M., Ketterling, M.G. and McCarty, D.R. (2005) Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis. Plant Physiol 139:437-447
Terzaghi, W.B. and Cashmore, A.R. (1995) Light-regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 445–474
Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A. and Coupland, G. (2004) Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering. Science 303: 1003-1006
Wang, Z.Y. and Tobin, E.M. (1998) Constitutive expression of the
CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207-1217
Wang, Z.Y., Kenigsbuch, D., Sun, L., Harel, E., Ong, M.S. and Tobin, E.M. (1997) A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9: 491–507
Wenkel, S., Turck, F., Singer, K., Gissot, L., Gourrierec, J., Samach, A. and Coupland, G. (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18: 2971-2984
Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U. and Weigel, D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309: 1056–1059
Xiao-Fei Cheng and Zeng-Yu Wang (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 43: 758-768
Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. and Dubcovsky, J. (2003) Positional cloning of wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100: 6263-6268
Yan, L.L., Loukoiaov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V. and Dubcovsky, J. (2004) The weat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303: 1640-1644
Yano, M., Harushima, Y., Nagamura, Y., Kurata, N., Minobe, Y. and Sasaki, T. (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95: 1025–1032
Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y. and Nagamura, Y. (2000) Genetic Control of Flowering Time in Rice, a Short-Day Plant. Plant Cell 12: 2473–2484
Zobell, O., Coupland, G. and Reiss, B. (2005) The family of CONSTANS-like genes in Physcomitrella patens. Plant Biol. 7: 266-275
指導教授 葉靖輝(Ching-Hui Yeh) 審核日期 2012-4-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明