博碩士論文 982206009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.131.38.22
姓名 王俊民(Jyun-Min Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 二維光子晶體Mach-Zehnder干涉儀在光儲存上應用之研究
(Study of two-dimensional photonic crystal Mach-Zehnder interferometer on applications of light storage)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文,我們提出利用二維光子晶體Mach-Zehnder干涉儀來儲存光能量。所研究的Mach-Zehnder干涉儀是由光子晶體分光器、波導與轉角波導(arm)所構成並利用有限時域差分法(FDTD)來模擬光場與能量分佈。為了能夠儲存能量,我們改變光子晶體Mach-Zehnder干涉儀中部分區域的折射率讓相位差可以產生變化,進一步地使Q值可以自由地操控。目前能量儲存的模擬結果,其Q值大小約為1482。
摘要(英) In this study, we propose a way to store power of light using a two-dimensional photonic crystal Mach-Zehnder interferometer. The Mach-Zehnder interferometer composed of photonic crystal channel waveguides、beam splitters and arms is simulated by 2-D finite-difference time-domain(FDTD). Using the change of the index of dielectric rods in the photonic crystal arm alters the phase difference to control quality factor (Q factor) of the Mach-Zehnder interferometer structure dynamically. We obtain Q factor = 1482 for the Mach-Zehnder interferometer structure at present.
關鍵字(中) ★ 光子晶體
★ Mach-Zehnder干涉儀
★ 光儲存
關鍵字(英) ★ photonic crystal
★ Mach-Zehnder interferometer
★ light storage
論文目次 摘要....................................................I
Abstract...............................................II
致謝..................................................III
目錄........................................... .......IV
圖目錄.................................................VI
表目錄................................................ IX
第一章 序論........................................... 1
1.1 光子晶體簡介...................................... 1
1.2 光子晶體光開關與光儲存............................ 6
1.3 研究動機.......................................... 14
1.4 結論.............................................. 15
第二章 基本原理....................................... 17
2.1 平面波展開法(Plane Wave Expansion, PWE)........... 17
2.2 有限時域差分法(Finite-Difference Time-Domain, FDTD)................................................. 20
2.3 Q值(Quality factor)計算方法........................24
2.4 結論.............................................. 25
第三章 光子晶體Mach-Zehnder干涉儀..................... 27
3.1 光子晶體Mach-Zehnder干涉儀結構模擬................ 27
3.2 光子晶體Mach-Zehnder干涉儀之相位調制模擬.......... 31
3.3 模擬分析與討論.................................... 33
3.4 結論.............................................. 34
第四章 光子晶體Mach-Zehnder干涉儀型光學式記憶體....... 36
4.1 模擬結構.......................................... 36
4.2 光儲存(storage)與讀取(read)....................... 37
4.3 模擬分析與討論.................................... 41
4.4 結論.............................................. 42
第五章 總結與未來工作................................. 43
5.1 總結.............................................. 43
5.2 未來工作.......................................... 44
參考文獻.............................................. 46
參考文獻 [1] 欒丕綱、陳啟昌, “光子晶體-從蝴蝶翅膀到奈米光子學”, 五南圖書出版股份有限公司, 2006.
[2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[4] A. Blanco, E. Chomski, S. Grabtchak et al., “large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5micrometres”, Nature 405, 437 (2000).
[5] S. Y. Lin, J. G. Fleming, D. L. Hetherington et al., “A three- dimensional photonic crystal operating at infrared wavelengths”,Nature 394, 261 (1998).
[6] E. Yablonovitch and T. J. Gmutter, “Photonic Band Structure:The Face-Centered-Cubic Case Employing Nonspherical Atoms”, Phys. Rev. Lett. 67, 2295 (1991).
[7] E. Yablonovitch and T. J. Gmutter, “Donor and Acceptor Modes in Photonic Band Structure”, Phys. Rev. Lett. 67, 3380 (1991).
[8] Y. Akahane, M. Mochizuki, T. Asano et al., “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two- dimensional photonic crystal slab”, Appl. Phys. Lett. 83, 1341 (2003).
[9] O. Painter, R. K. Lee, A. Scherer et al., “Two-Dimensional Photonic Band-Gap Defect Mode Laser”, Science 284 ,1819 (1999).
[10] T. Baba, D. Mori, K. Inoshita et al., “Light Localizations in Photonic Crystal Line Defect Waveguides”, IEEE J. Quantum Electron. 10, 484 (2004).
[11] M. Augustin, H.-J. Fuchs, D. Schelle, “Highly efficient waveguide bends in photonic crystal with a low in-plane index contrast”, Opt. Express 11, 3284 (2003).
[12] T. Zijlstra, E. van der Drift, M. J. A. de Dood et al., “Fabrication of Two-Dimensional Photonic Crystal Waveguides for 1.5μm in Silicon by Deep Anisotropic Dry Etching”, J. Vac. Sci. Technol. B 17, 2734 (1999).
[13] Wikipedia. "Opal", http://en.wikipedia.org/wiki/Opal#Precious_opal.
[14] A. R. Parker, and H. E. Townley, “Biomimetics of photonic nanostructures”, Nature 2, 347 (2007).
[15] L. P. Biro´, Zs. Ba´lint, K. Kerte´sz et al.,“Role of photonic-crystal- type structures in the thermal regulation of a Lycaenid butterfly sister species pair”, Phys. Rev. E. 67, 021907 (2003).
[16] S. Yoshioka and S. Kinoshita,“Polarization-sensitive color mixing in the wing of the Madagascan sunset moth”, Opt. Express 15, 2691 (2007).
[17] S. Miller, “Integrated Optics: an introduction”, Bell Syst. Tech. J. 48, 2059 (1969).
[18] M. Notomi, A. Shinya, S. Mitsugi et al.,“Waveguides, resonators and their coupled elements in photonic crystal slabs”, Opt. Express 12, 1551 (2004).
[19] E. A. Camargo, H. M. H. Chong1 and R. M. De La Rue, “2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure”, Opt. Express 12, 588 (2004).
[20] Y. A. Vlasov, M. O’Boyle1, H. F. Hamann, “Active control of slow light on a chip with photonic crystal waveguides”, Nature 483, 65 (2005).
[21] X. Wang, H. Tian and Y. Ji, “Photonic crystal slow light Mach– Zehnder interferometer modulator for optical interconnects”, Journal of Optics 12, 065501 (2010).
[22] H.-M. Chen, J. Su, J.-L. Wang et al., “Optically-controlled high- speed terahertz wave modulator based on nonlinear photonic crystals”, Opt. Express 19, 3599 (2011).
[23] S. Noda, A. Chutinan and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure”, Nature 407, 608 (2000).
[24] Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two- dimensional phonic crystal slabs”, Appl. Phys. Lett. 83, 1512 (2003).
[25] Y. Akahane, T. Asano, B.-S. Song and S., “Noda,High-Q photonic nanocavity in a two-dimensional photonic crystal”, Nature
425, 944 (2003).
[26] B.-S. Song, S. Noda, T. Asano AND Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity”, Nature 4, 207 (2005).
[27] Y. Tanaka, J. Upham, T. Nagashima, “Dynamic control of the Q factor in a photonic crystal nanocavity”, Nature 6 , 862 (2007).
[28] K. Sakoda, “Optic Properties of Photonic Crystals”, Springer, 2001.
[29] Charles Kittel, “Introduction to Solid State Physics”, John Wiley & Sons, Inc.
[30] K.S.Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media”, IEEE Trans. Antennas Propag. 14, 302 (1966).
[31] K. Kawano, T. Kiton, “Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrödinger Equation,”
WILEY, 2001.
[32] O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two- dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275 (1999).
[33] O. Svelto and D. C. Hanna, “Principles of Lasers”, Third Edition, Springer.
[34] C.-C. Chen, H.-D. Chien, and P.-G. Luan, “Photonic crystal beam splitters”, Appl. Opt. 43, 6187 (2004).
[35] 簡宏達, “二維雙輸入雙輸出光子晶體分光器”, 國立中央大學光電科學研究所碩士論文, 2003.
[36] A. Mekis, J. C. Chen, I. Kurland, S. Fan,High, “Transmission through Sharp Bends in Photonic Crystal Waveguides”, Phys. Rev. Lett. 77, 3787 (1996).
[37] M. Notomi, “Manipulating light with strongly modulated photonic crystals”, Rep. Prog. Phys. 73, 096501 (2010).
[38] C. Husko, A. D. Rossi, S. Combrié, “Ultrafast all-optical modulation in GaAs photonic crystal cavities”, Appl. Phys. Lett. 94, 021111 (2009).
[39] I.-K. Hwang, M.-K. Kim, and Y.-H. Lee, “All-Optical Switching in InGaAsP–InP Photonic Crystal Resonator Coupled With Microfiber”, IEEE Photon. Technol. Lett. 19, 1535 (2007).
[40] K. Nozaki, T. Tanabe, A. Shinya et al., “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity”, Nature 4, 477 (2010).
[41] Y. Jiang, Wei Jiang, L. Gu, “80-micro interaction length silicon photonic crystal waveguide modulator”, Appl. Phys. Lett. 87, 021101 (2005).
[42] T. F. Krauss, “Why do we need slow light?”, Nature 2, 448 (2008).
[43] T F Krauss, “slow light in photonic crystal waveguides”, J. Phys. D. 40, 2666 (2007).
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明