博碩士論文 982206013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.119.102.108
姓名 鄭又瑄(Yow-shiuan jeng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 螢光粉參數對於白光LED封裝效率之研究
(The studies of power efficiency with different phosphor parameters in white LEDs)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文我們針對矽酸鹽螢光粉濃度與厚度對於白光LED封裝效率的影響進行研究與分析。首先利用已建構之矽酸鹽螢光粉模型,以藍光雷射激發各種不同濃度與厚度的螢光粉薄片,分析其正向、側向及背向的能量,並以實驗驗證模擬結果,作為後續白光LED封裝效率比較的分析基礎。接著將激發光源改為藍光LED,在螢光粉遠離晶片的實驗架構下,比較不同濃度與厚度螢光粉對封裝效率的影響;此外也利用模擬改變封裝腔體的反射率,進一步分析螢光粉濃度、厚度與白光LED封裝效率之間的對應關係。
摘要(英) In this thesis, we studied on the power efficiency with different phosphor concentrations and thicknesses in white LEDs. Based on our silicate phosphor model, we used a blue light laser to excite phosphor plates with different concentrations and thicknesses and analysis the forward power, sideward power and backward power of each phosphor plate in the first time. We also did the experiment to verify our simulation and then used the measurement results to analysis the power efficiency in white LEDs later. Secondly, we changed the light source from a blue light laser to a blue LED and researched the power efficiency with different phosphor concentrations and thicknesses under the remote phosphor configuration. Besides, we also changed the surface reflectance in the simulation in order to figure out the reciprocal effects among phosphor concentration, phosphor thickness and power efficiency in white LEDs.
關鍵字(中) ★ 白光LED
★ 矽酸鹽螢光粉
★ 封裝效率
關鍵字(英) ★ silicate phosphor
★ power efficiency
★ white LED
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 發光二極體之背景 1
1.2 研究動機 4
1.3 論文大綱 9
第二章 基本理論 10
2.1 引言 10
2.2 0LED發光原理 10
2.3 螢光粉發光原理 11
2.4 混光原理 13
2.5 白光LED之封裝效率 14
第三章 螢光粉薄片正向、側向及背向能量分析 16
3.1 引言 16
3.2 螢光粉粒子數之計算 16
3.3 螢光粉模型之介紹 20
3.4 實驗結果與模擬分析之比較 26
第四章 不同濃度與厚度螢光粉之封裝效率比較 46
4.1 引言 46
4.2 實驗結果之比較分析 46
4.3不同封裝腔體反射率出光效率之比較 52
第五章 結論 59
參考文獻 61
中英文名詞對照表 65
參考文獻 [1] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L.Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3, 160-175 (2007).
[2] R. D. Dupuis and M. R. Krames, “History, development, and applications of high-brightness visible light-emitting diodes,” IEEE J. Lightwave Technol. 26, 1154-1171 (2008).
[3] E. F. Schubert and J. K. Kim, “Solid-state light source getting smart,” Science 308, 1274-1278 (2005).
[4] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron 8, 310-320 (2002).
[5] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Stat. Sol. A 202, 60-62 (2005).
[6] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to solid-state lighting (John Wiley & Sons, New York, 2002).
[7] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[8] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converter light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron 8, 339-345 (2002).
[9] JLEDs, http://www.led.or.jp/data/docs/JLEDS_Technical%20Report%20Vol2.pdf.
[10] LEDinside, http://www.ledinside.com.tw/node/9288/.
[11] LEDinside, http://www.ledinside.com.tw/node/11950/.
[12] 孫慶成,螢光粉模型與LED 光色的控制,2010 LED 固態照明研討論文集,國立中央大學,中壢市,中華民國九十七年。
[13] F. M. Steranka, J. C. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y. C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, and J. J. Wierer, “High power LEDs-technology status and market applications,” Phys. Stat. Sol. A 194, 380-388 (2002).
[14] K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
[15] J. K. Kim and E. F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express 16, 21835-21842 (2008).
[16] LEDinside, http://www.ledinside.com/node/10504/.
[17] LEDinside, http://www.ledinside.com/node/9255/.
[18] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
[19] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electronics 8, 333-338 (2002).
[20] Y. Sato, N. Takahashi, and S. Sato, “Full-color fluorescent display devices using a near-UV light-emitting diode,” Jpn. J. Appl. Phys. 35, 838-839 (1996).
[21] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[22] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A 64, 417-418 (1997).
[23] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers (Spinger, New York, 1997).
[24] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
[25] C. C. Yang, C. M. Lin, Y. Chen, Y. T. Wu, S. R. Chuang, S. F. Huand, and R. S. Liua, “Highly stable three-band white light from an InGaN-based blue light emitting diode chip precoated with (oxy)nitride green/red phosphors,” Appl. Phys. Lett. 90, 123503 (2007).
[26] Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1-3 (2009).
[27] ENERGY STAR, http://www.energystar.gov/index.cfm?c=ssl_res.pt_ssl/.
[28] R. Mirhosseini, M. F. Schubert, S. Chhajed, J. Cho, J. K. Kim, and E. F. Schubert “Improved color rendering and luminous efficacy in phosphor-converted white light-emitting diodes by use of dual-blue emitting active regions,” Opt. Express 17, 10806-10813 (2009).
[29] Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE 5530, 88-98 (2004).
[30] J. K. Sheu, C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, Y. C. Lin, J. M. Tsai, R. K. Wu, and G. C. Chi, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
[31] R. J. Xiea, N. Hirosak, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101-191103 (2007).
[32] N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hirosaki, and R. J. Xie, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109-051111 (2007).
[33] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Opt. Exp. 18, 5055-5060 (2010).
[34] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505 (2005).
[35] S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” Appl. Phys. Lett. 92, 143309 (2008).
[36] B. F. Fan, H. Wu, Y. Zhao, Y. L. Xian, and G. Wang, “Study of phosphor thermal-isolated packaging technologies for high-power white light-emitting diodes,” IEEE Photon. Technol. Lett. 19, 1121-1123 (2007).
[37] Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027-2029 (2008).
[38] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup,” Jpn. J. Appl. Phys. 44, 649-651 (2005).
[39] R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for ultra high brightness LED package,” Proc. SPIE 6198, 61980-B 1-12 (2006).
[40] S. C. Allen and A. J. Steckl, “ELiXIR-solid-state luminaire with enhanced light extraction by internal reflection,” IEEE J. Display Technol. 3, 155-159 (2007).
[41] K. Yamada, Y. Imai, and K. Ishii, “Optical simulation of light source devices composed of blue LEDs and YAG phosphor,” J. Light & Vis. Env. 27, 70-74 (2003).
[42] 陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電所碩士論文,中華民國九十七年。
[43] N. T. Tran and F. G. Shi, “Studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes,” J. Lightwave Technol. 26, 3556-3559 (2008).
[44] Cree Inc., http://www.cree.com/products/pdf/XLampML_SH.pdf.
[45] Cree Inc., http://www.cree.com/products/pdf/XLampXM_SolderingandHandling.pdf.
[46] C. C. Chen, C. Y. Chen, W. T. Chien, T. H. Yang, and C. C. Sun, “Optical performance as a function of phosphor particle number in white LED,” Proc. SPIE 7786, 778606 (2010).
[47] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2003).
[48] E. F. Schubert, Light Emitting Diodes (Cambridge University Press, New York, 2006).
[49] 劉如熹、劉宇恒,發光二極體用氧氮螢光粉介紹,全華圖書股份有限公司,台北縣,中華民國九十五年。
[50] 高逢時,黑夜的精靈─螢光體,科學發展期刊,第三百六十七期,64-69頁,中華民國九十二年。
[51] 劉如熹、王健源,白光發光二極體製作技術-21世紀人類的新曙光,全華圖書股份有限公司,台北縣,中華民國九十四年。
[52] 大田 登,色彩工程學:理論與應用,全華圖書股份有限公司,台北縣,中華民國九十六年。
[53] R. Tasker, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined atom-based nanophosphors for silid state lighting,” Proc. SPIE 5187, 133-141 (2003).
[54] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination grade white pcLED,” Proc. SPIE 5187, 115-122 (2003).
[55] A. Borbely and S. G. Johnson, “Performance of phosphor-coated light emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
[56] 何信穎,白光LED 之YAG 螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
[57] 張容瑄,綠橘雙色矽酸鹽螢光粉光學模型之建立與分析,國立中央大學光電所碩士論文,中華民國九十九年。
[58] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
[59] 紀葦世,高效能YAG螢光粉之特性量測與模型,元智大學光電所碩士論文,中華民國九十九年。
[60] Intematix Co., http://intematix.com/files/images/Catalog-2010.pdf.
[61] N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol. 27, 5145-5150 (2009).
指導教授 孫慶成(Ching-cherng Sun) 審核日期 2011-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明