博碩士論文 982206017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.215.182.36
姓名 張彥中(Yen-chung Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 具三維光路之光連接發射端模組
(Transmitting Part of Optical Interconnect Module with Three-Dimensional Optical Path)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組
★ 建立於矽基光學平台之高分子聚合物波導光路★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製
★ 發光二極體色溫控制技術及其於色序式微型投影機之應用★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模
★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組
★ 利用光展量概念之微型投影機光學設計方法與實作★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組
★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組★ 具垂直耦光45˚矽基反射面之高分子聚合物波導應用於20-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本論文中,提出並驗證「具三維光路之光連接發射端模組」之研究。此模組架構是採用雷射與波導異側之架構,由面射型雷射出光穿透厚度為 500 μm的 SOI基板,再經由 45°矽基微反射面進入波導。藉由此方式可分別獨立電子元件與光子元件的製程,又可將電子元件與光電調製器、波導等光子元件整合,以達到光電模組高積體化、高效能的表現。本模組電子元件層包含高頻傳輸線、面射型雷射和金錫焊料;光子元件層則包含 45°微反射面和梯形脊狀波導。利用雙面對準之機制將電子元件層和光子元件層整合至 SOI矽晶圓兩側。
而模組末端乃利用多模光纖作為接收與傳輸。其光纖與模組間光學耦合效率為 -8.09 dB,而效率損耗 1 dB時在水平方向與垂直方向之位移容忍值分別為 30 μm及 19 μm。對於高頻研究方面,本研究採用低阻值 (1 - 10 ohm-cm)之 SOI矽晶圓製作高頻傳輸線並量測其高頻傳輸特性。此模組在 2.5 Gbps的操作速度時,上升與下降時間差異並不大;眼圖訊號在其眼睛邊際 (Eye margin)內是非常乾淨,且眼高及眼寬分別為 34 mV與 350 ps,由此我們可再次驗證此模組對於 2.5 Gbps的訊號傳遞是具一定可行性。
摘要(英) In this thesis, transmitting part of optical interconnect module with three-dimensional optical Path is proposed. In this module, the laser and waveguide are on the different sides of SOI. The light is emitted from vertical cavity surface emitting laser (VCSEL). The light of laser passes through 500μm SOI and couples into ridge waveguide by 45 degree micro-reflector. By this way, the fabrication of electronic-device part and photonic-device part could be separated. The electronic-device, optical modulators, and waveguide could be combined. Therefore, photoelectric module could be highly density integrated and efficient energy. This module contains electronic-device layer and photonic-device layer. The high-frequency transmission line, VCSEL, and Au/Sn bonding pad are fabricated on the electronic-device layer. The 45 degree micro-reflector and trapezoidal ridge waveguide are fabricated on the photonic-device layer. Using the double-side alignment technology to combine the electronic-device layer and photonic-device layer on the SOI front and back sides.
To assess optical characteristic of optical connector, the multi-mode fiber is used to measure the optical level and degradation 1-dB tolerance of module in this research. The optical coupling is -8.09dB. The degradation 1-dB tolerances are 30μm and 19μm. Using low-resistivity SOI wafer (1 - 10 ohm-cm) to confirm the high frequency of this module and fabricate transmission line. This module in the operating speed of 2.5 Gbps, the rise and fall time is not much difference; eye signals in the eye margin (Eye margin) is very clean inside, and the eye height and eye width were 34 mV and 350 ps, thus, we can once again verify this module for the 2.5 Gbps signal transmission is a certain feasible.
關鍵字(中) ★ 三維
★ 光連接
關鍵字(英) ★ Optical Interconnect
★ Three-Dimensional
論文目次 摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
第二章 具三維光路之光連接發射端模組設計 6
2-1 具三維光路之光連接發射端模組之波導、45°反射面尺寸架構及高頻傳輸線設計 7
2-1.1 SOI 規格之評估 7
2-1.2 具三維光路之光連接發射端模組之光波導結構設計 11
2-2 具三維光路之光連接發射端模組之光學訊號準位模擬分析 13
2-3 具三維光路之光連接發射端模組之高頻傳輸線模擬 19
第三章 具三維光路之光連接發射端模組製程開發 22
3-1 具三維光路之光連接發射端模組之光波導製作 22
3-2 具三維光路之光連接發射端模組之高頻傳輸線製作與金錫合金焊料製程 27
3-3 面射型雷射之覆晶封裝製程 32
第四章 具三維光路之光連接發射端模組量測 34
4-1 具三維光路之光連接發射端模組光耦合效率量測 34
4-2 具三維光路之光連接發射端模組之高頻特性量測 39
第五章 結論與未來展望 49
參考文章 51
參考文獻 1. Jun Sakaguchi1, Yoshinari Awaji1, Naoya Wada1, Atsushi Kanno1, Tetsuya Kawanishi1, Tetsuya Hayashi2, Toshiki Taru2, Tetsuya Kobayashi3, Masayuki Watanabe3,“109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” OSA/OFC/NFOEC 2011, PDPB6
2. Intel’s official website: http://techresearch.intel.com/articles/None/1813.htm
3. R. Heming, L. C. Wittig, P. Dannberg, J. Jahns, E. B. Kley, and M. Gruber, Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., 26(14), 2136-2141 (2008).
4. P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS system,” IEEE J. Sel. Top. Quantum Electron., 9(2), 624-635 (2003).
5. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B, 21(2), 147-156 (1998).
6. I. Connor, F. Tissafi-Drissi, F. Gaffiot, J. Dambre, M. De Wilde, J. Van Campenhout, D. Van Thourhout, J. Van Campenhout, and D. Stroobandt, “Systematic simulation-based predictive synthesis of integrated optical interconnect,” IEEE Trans. on VLSI Sys., 15, 927-940 (2007).
7. Berkehan Ciftcioglu, Rebecca Berman, Jian Zhang, Zach Darling, Shang Wang, Jianyun Hu, Jing Xue, Alok Garg, Manish Jain, Ioannis Savidis, Duncan Moore, Michael Huang, Eby G. Friedman, Gary Wicks, and Hui Wu, “A 3-D Integrated Intrachip Free-Space Optical Interconnect for Many-Core Chips”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 23, NO. 3, FEBRUARY 1, 2011
8. J.-M. Fedeli1, L. Liu2,3, L. Grenouillet1, D.Bordel1, F. Mandorlo4, N. Olivier1, T. Spuesens2, P. Regreny4, P. Grosse1 P. Rojo-Romeo4, R.Orobtchouk4, and D. Van Thourhout2. “Towards Optical Networks-on-Chip with 200mm hybrid technology”, OSA/OFC/NFOEC 2011, OMM3
9. 沈帛寬,”具45°反射面之非共平面轉折波導光路,” (中央大學光電所碩士論文, 台灣, 2010)
10. H. C. Lan, H. L. Hsiao, C. C. Chang, C. H. Hsu, C. M. Wang, M. L. Wu,“Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector,” Opt. Express, 17, 20938-20944 (2009).
11. 楊凌岡,“以矽光學平台為基礎之4通道10-Gbps光學連結模組之發射端,” (中央大學光電所碩士論文, 台灣, 2010)
12. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J.Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol., 22, 2043-2054 (2004).
13. F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express, 17, 10514-10521 (2009).
14. 張育誠, “微型光學讀取頭之元件,” (中央大學光電所碩士論文, 台灣, 2003)
15. I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sensors and Actuators A: Physical, 84, p. 116-125 (2000)
16. I. Zubel, “Silicon anisotropic etching in alkaline solutions IV – The effect of organic and inorganic agents on silicon nisotropic etching process,” Sensors and Actuators A: Physical, 87, p. 163-171 (2001)
17. I. Zubel, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A: Physical, 93, p. 138-147 (2001)
18. M. Shikida, K. Tokoro, D. Uchikawa, K. Sato, Surface morphology of anisotropically etched single-crystal silicon, J. Micromech. Microeng.10 (2000) 522–527.
19. K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa, S. Ito, Roughen- ing of single crystal silicon surface etched by KOH water solutions, Sens. Actuators A 73 (1999) 122–130.
20. M. Shikida, K. Sato, K. Tokoro, D. Uchikawa, Differences in anisotropic etching properties of KOH and TMAH solutions, Sens. Actuators A 80 (2000) 179–188.
指導教授 伍茂仁(Mount-Learn Wu) 審核日期 2011-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明