博碩士論文 982206027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.140.188.16
姓名 許閔(Min Hsu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 週期性奈米金屬結構對拉曼散射訊號增強之研究
(The Study of Periodical Metallic Nanostructures for Surface Enhanced Raman Scattering)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究主要使用有限時域差分法模擬計算在週期性金屬奈米結構下之表面電漿共振效應,並針對奈米球微影技術模擬其相關光學現象,不同的粒子形狀、大小和高度等參數都會對周期性金屬奈米結構所對應的共振現象有所影響。而此相關研究對許多方面的應用都相當有幫助,例如表面增強拉曼散射、單分子偵測技術以及其它像是太陽能電池效率提升等用途。
第一部分我們利用預測的奈米球微影術所形成之週期性奈米點狀陣列結構計算其消光截面積之物理量以了解所對應之表面電漿共振波長。模擬結果顯示,藉由變化奈米點狀陣列結構之材料、厚度、大小等皆會造成共振波長位置的移動,例如結構厚度增加或是基板折射率的減少,都會造成共振波長藍移的現象,而金屬銀相對於金在同樣條件之下,其共振波長位置皆小於金,藉此可做為製程前的事前評估。
第二部分為實際進行實驗,利用奈米球微影技術製作週期性奈米結構基板,並應用於量測表面增強拉曼散射現象之用途。實驗結果顯示,針對濃度為10-3M之R6G分子溶液可完成定性量測,並觀測到其表面增強拉曼散射之現象。
摘要(英) In this study, we used finite-difference time-domain method to study the surface plasmon resonance effects of metallic periodical nanostructure. The simulation model was constructed based on the nanosphere lithography (NSL) process to calculate the optical properties. The size, shape, and thickness of the periodical metallic nanostructure were varied to find their influence on plasmonic effects. It would be useful if the optimum parameters are found, and they’’re likely to have significant impact in several applications, such as surface enhanced Raman scattering (SERS), single-molecule spectroscopy, and efficiency enhancement of solar cells.
In the first part of this thesis, the periodical nanostructure is made by nanosphere lithography process which we forecast is investigated the corresponding LSPR wavelengths by extinction cross section. Simulation results show that the LSPR effects can be changed by controlling the size, thickness, and material of structure. For instant, the LSPR wavelengths blue shifted to the shorter wavelength as the thickness of the nanostructure increases, or the value of substrate index refraction decreases. And compare with the materials of Ag and Au in the same condition, the position of LSPR wavelengths in Ag is shorter than Au. These optical properties can made assessments before the process.
In the second part of this thesis, we experiment the NSL technology to fabricate periodical nanostructure as SERS active substrates. The results show we accomplish 10-3M R6G solution qualitative measurement based on these substrates, and observed the phenomenon of SERS.
關鍵字(中) ★ 侷域表面電漿共振
★ 表面增強拉曼散射
★ 奈米球微影技術
關鍵字(英) ★ localized surface plasmon resonance
★ surface-enhanced Raman scattering
★ Nanosphere lithography
論文目次 摘要..................................................I
Abstract..............................................II
致謝..................................................III
目錄..................................................IV
圖目錄................................................VI
表目錄................................................X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 2
1.4 論文架構 3
第二章 原理 4
2.1 金屬之表面電漿共振 4
2.1.1 介電質與金屬介面之表面電漿共振 5
2.1.2 金屬粒子之侷域表面電漿共振 9
2.2 拉曼散射理論 12
2.3 表面增強拉曼散射 14
第三章 基板結構設計與模擬 19
3.1 奈米球微影技術 (Nano-sphere Lithography) 19
3.2 有限時域差分理論 (Finite-difference time-domain) 21
3.3 模擬模型建置與參數設定 26
3.4 模擬結果與討論 34
第四章 基板製作與量測 41
4.1 基板製作流程 41
4.2 基板相關參數量測 41
4.3 拉曼光譜量測流程設計 53
4.4 實驗結果與討論 57
第五章 結論與未來展望 69
5.1 結論 69
5.2 改善方式 71
5.3 未來展望 72
參考資料 74
參考文獻 第一章
[1.1] 陳永芳, 是誰最先觀測到拉曼散射, 物理雙月刊, 廿一卷五期, 1999.
[1.2] C. V. Raman, and K. S. Krishnan, A new type of secondary radiation,Nature 121, 501-502, 1928.
[1.3] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Raman Spectra of Pyridine Adsorbed at a Eilver Electrode, Chem. Phys. Lett. 26, 163-166, 1974.
[1.4] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer-Verlag, Heidelberg, Germany, 1995.
[1.5] Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures, J. Phys. Chem. B 106, 9463-9483, 2002.
[1.6] B. Ren, D. Y. Wu, B.W. Mao, and Z. Q. Tian, Surface-Enhanced Raman Study of Cyanide Adsorption at the Platinum Surface, J. Phys. Chem. B, 107 (12), 2752-2758, 2003.
[1.7] 簡竹瑩, 不同尺寸奈米銀顆粒的製備及顆粒大小對苯甲酸表面增強拉曼散射的影響, 碩士論文, 逢甲大學, 2007.
[1.8] J. E. Rowe, C. V. Shank, D. A. Zwemer, and C. A. Murray, Ultrahigh-Vacuum Studies of Enhanced Raman Scattering from Pyridine on Ag Surfaces, Phys. Rev. Lett. 44, 1770-1773, 1980.
[1.9] M. L. Zhang, X. Fan, H. W. Zhou, M. W. Shao, J. A. Zapien, N. B. Wong, and S. T. Lee, A high-efficiency surface-enhanced Raman scattering substrate based on silicon nanowires array decorated with silver nanoparticles, J. Phys. Chem. C 114, 1969-1975, 2010.
[1.10] X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides, Appl. Phys. Lett. 96, 053104, 2010.
[1.11] P. K. Jain, W. Huang, and M. A. El-Sayed, On the Universal Scaling Behaviour of the Distance Decay of Plasmon Coupling in Metal Nanopartical Pairs : A Plasmon Ruler Equation, Nano Lett. 7, 2080-2088, 2007.
[1.12] W. Q. Hu, E. J. Liang, P. Ding, G. W. Cai, and Q. Z. Xue, Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial, Opt. Express 17, 21843-21849, 2009.
[1.13] D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, and J. K. Wang, Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates, Opt. Express, 19(5):4337-4345, 2011.
[1.14] A. Hartschuh, Tip-enhanced near-field optical microscopy, Angew Chem Int Ed Engl., 47(43):8178-8191, 2008.
[1.15] W. C. Lin, H. C. Jen, C. L. Chen, D. F. Hwang, R. Chang, J. S. Hwang, and H. P. Chiang, SERS study of Tetrodotoxin (TTX) by using sliver nanoparticle arrays, Plasmonics 4, 187-192, 2009.
[1.16] Y. C. Cao, R. Jin, and C. A. Mirkin, Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection, Science 297, (5586), 1536-1540, 2002.
第二章
[2.1] K. A.Willets and R. P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopyand Sensing, Annu. Rev. Phys. Chem., 58, 267-297 2007.
[2.2] 邱國斌、蔡定平, 金屬表面電漿簡介, 物理雙月刊, 廿八卷二期, 2006.
[2.3] 陳敏瑋, 奈米金屬顆粒之表面電漿共振共振效應研究, 博士論文, 國立台灣大學, 2009.
[2.4] 吳民耀、劉威志, 表面電漿子理論與模擬,物理雙月刊, 廿八卷二期, 2006.
[2.5] 楊序鋼、吳琪琳,拉曼光譜的分析與應用, 國防工業出版社, 2008.
[2.6] S.A. Maier, Plasmonics: Fundamentals and Applications, pp. 159-161 Springer, 2007.
[2.7] J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy 2nd, pp. 17, Elsevier, 2003.
[2.8] M. G. Albrecht, and J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc. 84. 1-20, 1977.
[2.9] D. L. Jeanmaire and R. P. Van Duyne, Surface raman spectroelectro chemistry:Part I, Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem., vol.84, pp. 1-20 1977.
[2.10] Ch. Zander, J. Enderlein, R. A. Keller, Single Molecule Detection in Solution, pp. 124, Wiley-VCH, 2002.
[2.11] K. Kneipp, H. Kneipp, I. Itzkan, Ramachandra R Dasari, and Michael S Feld, Surface-enhanced Raman scattering and biophysics, J. Phys.: Condens. Matter 14 R597-R624, 2002.
[2.12] 吳承祐, 應用於表面增強拉曼散射之奈米金屬週期結構基板設計研究, 碩士論文, 國立台灣海洋大學, 2010.
第三章
[3.1] 施怡婷, 奈米小球微影法在太陽能電池表面粗化上的研究, 碩士論文, 國立中央大學, 2010.
[3.2] J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and Richard P. Van Duyne, Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications, Faraday Discuss. 132:9-26, 2006.
[3.3] J. C. Hulteen and R. P. Van Duyne, Nanosphere lithography: A materials general fabrication processfor periodic particle array surfaces, J. Vac. Sci. Technol. A 13(3), pp.1553-1558, 1995.
[3.4] C. L. Cheung, R. J. Nikolić, C. E. Reinhardt, and T. F. Wang, Fabrication of nanopillars by nanospherelithography,Nanotechnology 17:5, pp. 1339-43, 2006.
[3.5] D. J. Campbell and K. E. Korte, Fabrication and Analysis of Photonic Crystals, J. Chem. Educ.Vol.84, No.11, pp.1824-1826, Nov. 2007.
[3.6] D. M. Kuncicky, B. G. Prevo, and O. D. Velev,Controlled assembly of SERS substratestemplated by colloidal crystal films,J. Mater.Chem.,16, 1207-1211, 2006.
[3.7] 易政男, 藉由奈米電漿子偵測信號強化之表面電漿共振與表面強化拉曼散射生物感測器, 博士論文, 國立中央大學,2005.
[3.8] S. Gao, S. Zhang, S. Yang, and H. Zhang, Surface-enhanced Raman Scattering Active Substrates, ChineseAcademy of Sciences, Changchun 130022, 2007.
[3.9] 欒丕綱, 陳啟昌, 光子晶體-從蝴蝶翅膀到奈米光子學, 五南出版社, 台北市, 2005.
[3.10] A. Taflove, and S. C. Hagness, Computational Electrodyna- mics: The Finite-Difference Time-Domain Method, Artech House Publishers; 2nd BK & CD edition, 2001.
[3.11] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propagat. Vol. AP-14 pp. 302-307, 1966.
[3.12] J.P. Berenger, A Perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phy., vol.114, No. 2, 185-200, 1994.
[3.13] M. P. Kesler, J. O.Maloney, and B. L. Shirley, Antennadesign all-dielectric planar reflectors, Microw. Opt. Techn. Let., Vol.11, No. 4, 1996.
[3.14] C.F. Bohren, and D.R. Huffman, Absorption and scattering of light by small particles, John Wiley & Sons, 1983.
[3.15]http://www.lumerical.com/fdtd_online_help/nanowire_resonance_tutori al.php
[3.16] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval,T. R. Jensen, and Richard P. Van Duyne, Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays, J. Phys. Chem. B , 103, 3854-3863 1999.
[3.17] T. R. Jensen, M. D. Malinsky, C. L. Haynes, and Richard P. Van Duyne, Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles, J. Phys. Chem.B 2000, 104, 10549-10556, 2000.
[3.18] M. D. Malinsky, K. L. Kelly, G. C. Schatz, and Richard P. Van Duyne, Nanosphere Lithography:Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles, J. Phys. Chem.B 2001, 105, 2343-2350, 2001.
第四章
[4.1] 同[1.13]
[4.2] 吳錦榮, 利用脈衝調頻染料雷射研究單分子光譜學, 碩士論文, 國立中山大學, 2001.
[4.3] W. Luo, Wytze van der Veer, P. Chu, D. L. Mills, R. M. Penner, and J. C. Hemminger, Polarization-Dependent Surface Enhanced Raman Scattering from Silver 1D NanoparticleArrays, J. Phys. Chem. C, Vol. 112, No. 31, pp. 11609-11613, 2008.
[4.4] www.princetoninstruments.com/Uploads/Princeton/Documents/Whitep apers/etaloning.pdf etalon effect
[4.5] M. A. Green, and M. J. Keevers, Optical properties of intrinsic silicon at 300K, Progress in Photovoltaics: Research and Applications, vol. 3, issue 3, pp. 189 - 192, 1995.
指導教授 李正中、陳怡君
(Cheng-Chung Lee、Yi-Chun Chen)
審核日期 2011-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明