博碩士論文 982206035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:34.225.194.144
姓名 李振宇(Jen-yu Li)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 建立於矽基光學平台之高分子聚合物波導光路
(Polymer Waveguides Based on Silicon Optical Benches)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製
★ 發光二極體色溫控制技術及其於色序式微型投影機之應用★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模
★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組
★ 利用光展量概念之微型投影機光學設計方法與實作★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組
★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組★ 具垂直耦光45˚矽基反射面之高分子聚合物波導應用於20-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技日漸發達,傳遞的資訊量以倍數成長,以電為媒介的傳遞方式因受限到傳統銅材料特性的限制,提升傳遞頻寬及速率方面以達到了極限,利用光做為高速傳遞媒介之光連接技術取代是一種解決路徑。
本研究提出一個具45°反射面之高分子聚合物波導光路,此技術可應用於晶片內或晶片與晶片間光學訊號傳遞。在架構上藉由一個具光學品質的矽基45°反射面,利用波長為1550 nm的紅外光源進入高分子聚合物波導經45°反射面轉折進入光接收偵測器(Power Detector)具45°反射面高分子聚合物波導光路包含45°反射面與長直矩形波導,其長直矩形波導結構大小為40 μm × 20 μm。
本研究完成長直矩形波導以及具45°反射面之高分子聚合物波導光路之光學模擬、製程與光學特性量測。經由設計的具45°反射面之高分子聚合物波導光路,在長直矩形波導部分,插入損耗為-2.49 dB,傳遞損耗為-2.085 dB/cm,出射端多模光纖空間位移容忍度在耦合能量損失1 dB時在垂直方向與水平方向約為44 μm;具45°反射面轉折波導光路部份,插入損耗為-5.62 dB,入射端單模光纖光源位移容忍度在耦合能量損失1 dB時在垂直方向約為24 μm,水平方向則為8 μm。
摘要(英) In recent years, the optical interconnect is an important issue for communication technology. Because these are limitations of increasing transmission speed and bandwidth for traditional copper, the optical interconnect is the other approach to apply to the high-speed transmission.
In this paper, the polymer waveguide with a 45°reflector is introduced on the silicon optical bench. This technique can be applied to the optical interconnects of inter- or intra-chip applications. In the framework, the 1550 nm light source was coupled to polymer waveguide and bend to the power meter by 45°reflector. The proposed polymer waveguide fabricated on a silicon optical bench includes a Si-based 45° reflector and a straight rectangular waveguide with a cross-section of about 40 μm × 20 μm.
The insertion loss of straight rectangular waveguide is -2.49 dB, and its propagation loss is -2.085 dB/cm. At output multi-mode fiber, the 1-dB degradation tolerance in the vertical direction and the horizontal direction are about 44 μm. In the bending waveguide with a 45°reflector, the insertion loss is -5.62 dB, and the 1-dB degradation tolerance of input single-mode fiber is about 24 μm in the vertical direction, and is 8 μm in the horizontal direction.
關鍵字(中) ★ 高分子聚合物 關鍵字(英) ★ Polymer
★ Waveguide
論文目次 目錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 ix
第一章 序論 1
1-1 前言 1
1-2 研究動機與目的 8
第二章 具45°反射面之高分子聚合物波導光路設計 10
2-1 高分子聚合物波導光路結構尺寸設計 10
2-2 具45°反射面之高分子聚合物波導光路結構光學模擬分 15
2-2.1 長直矩形波導光路結構光學模擬 15
2-2.2 具45°反射面波導光路結構光學模擬 18
第三章 具45°反射面之高分子聚合物波導光路製作 23
3-1 長直矩形波導製作 23
3-2 具45°反射面波導光路製作 26
3-2.1 45°反射面製程 26
3-2.2 45°反射面之高反射率金屬層製程 29
3-2.3 波導光路製作 31
第四章 高分子聚合物波導光路之量測與分析 35
4-1 長直矩形高分子聚合物波導光學特性量測 35
4-1.1 長直矩形波導光學準位量測 35
4-1.2 長直矩形波導傳遞損耗量測 41
4-2 具45°反射面之高分子聚合物波導光路光學特性量測 44
4-2.1 具45°反射面轉折波導光路插入損耗 44
4-2.2 具45°反射面轉折波導光學準位量測 47
第五章 結論與未來展望 50
參考文獻 53
參考文獻 1. N. Savage, “Linking with light,” IEEE Spectr. vol. 39, no. 8, pp. 32–36, (2002)
2. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol., 22(9), 2043-2054 (2004)
3. S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron., 24(2), 927-934 (2006)
4. M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express, 14(15), 6823-6836 (2006)
5. X. Wang and R. T. Chen, “Fully embedded board level optical interconnects—From point-to-point interconnection to optical bus architecture,” Proc. SPIE, 6899, 6899031-6899039 (2008)
6. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron., vol. 11, no. 3, pp. 155–168, (1997)
7. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proceedings of the IEEE 88 (6), 728-749, (2000)
8. R. Ho, K. Mai, and M. Horowitz,“The Future of Wires,” Proceedings of the IEEE, pp. 490-504, Apr (2001)
9. J. Yeh, R. K. Kostuk, and K. Tu, “Hybrid free-space optical bus system for board-to-board interconnections,” Appl. Opt., vol. 35, no. 32, pp. 354–6364, (1996)
10. R. Heming, L. C. Wittig, P. Dannberg, J. Jahns, E. B. Kley, and M. Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., 26(14), 2136-2141 (2008)
11. P. Lukowicz et al., “Optoelectronic interconnection technology in the HOLMS system,” IEEE J. Sel. Top. Quantum Electron., 9(2), 624-635 (2003)
12. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B, 21(2), 147-156 (1998)
13. Jayakrishnan Chandrappan, “Performance Characterization Methods for Optoelectronic Circuit Boards,” IEEE J, vol. 1,no. 3, March (2011)
14. Xiaohui Lina, “Polymer Waveguide Arrary with 45 Degree Slopes Fabricated by Bottom Side Tilted Exposure,” SPIE Digital Library, Vol. 7944 794411-6(2011)
15. Roger Dangel,“Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,“ IEEE J,vol. 31,no. 4(2008)
16. I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sens. Actuators, A, 84(1), 116-125 (2000)
17. H. C. Lan, H. L. Hsiao, C. C. Chang, C. H. Hsu, C. M. Wang, M. L. Wu, “Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector,” Opt. Express, 17(23), 20938-20944 (2009)
18. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol., 22(9), 2043-2054 (2004)
19. F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express, 17(13), 10514-10521 (2009)
20. Graham T. Reed, and Andrew P. Knights, “Silicon Photonics,” Wiley(2004)
指導教授 伍茂仁(Mount-Learn Wu) 審核日期 2011-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明