博碩士論文 982206060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:107.21.85.250
姓名 陳昱廷(Tu-Ting Chen)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 以模擬退火演算法及考慮太陽光譜權重對具金屬背電極之太陽能電池設計寬頻與全向位抗反射層
(Broadband Omnidirectional Antireflection Coatings for Metal-Backed Solar Cells Optimized Using Simulated Annealing Algorithm Incorporated with Solar Spectrum)
相關論文
★ 以金屬與多層介電質組態實現可運用於矽基奈米光路之波導90度轉折結構★ 發展半解析法以設計高次模態合成之三維波導電漿子布拉格光柵
★ 以非對稱金屬與多層介電質組態實現可運用於奈米光路之方向性耦合器極化分離器★ 以金屬與多層介電質組態為基礎之新型波導布拉格光柵
★ 以保角映射結合傳輸線網路法設計與分析表面電漿轉折波導: 理論計算與數值模擬之比較★ 有損中間層引介之光學效應於實現最大光穿透率至薄膜太陽能電池吸收層之研究
★ 探討包含金屬之非對稱、單一位能障壁系統中輻射模態致發之共振光學穿隧★ 橫電極化光波入射非對稱「金屬-介電質」多層結構之共振耦合研究
★ 光波至混合電漿波導極化模態轉換器★ 基於模態漸變之嵌入式矽波導至混合電漿波導極化模態轉換器
★ 理論探討以金屬內部光輻射為基礎之太陽能光電轉換★ 以具全極化二維週期奈米結構之「金屬-介電質-金屬」吸收體實現電漿子增強之光電轉換
★ 具耦合電漿子增強之可見光波段電漿子光偵測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用模擬退火演算法結合地表之太陽輻射照度(AM 1.57),對太陽能電池之抗反射層做最佳化設計。材料之色散關係與背金屬之反射皆已在電磁計算中考慮。此外,抗反射層之材料折射率與厚度也被限制於現實可製造之範圍內,使所設計出之最佳化參數更為實際。
本研究針對塊材型多晶矽、銅銦鎵硒薄膜以及非晶矽薄膜三種在目前具代表性之太陽能電池之抗反射層做最佳化設計,並對考慮太陽輻射照度光譜之影響做探討。一般而言,在考慮太陽輻射照度光譜下,所設計出之抗反射層所得之角度平均反射率在太陽輻射照度較強之頻段會較低且較平緩。故此最佳化結果預測了從太陽能電池表面所可能獲得之最低反射率。
為了滿足低成本製造之需求,本研究針對300 μm厚之塊材型多晶矽太陽能電池上設計二氧化矽/二氧化鈦雙層抗反射層,在波長範圍 nm以及角度範圍 下所得之平均反射率為11.29%。從角度平均反射率頻譜可觀察出,因為矽材料吸收係數隨波長增大而衰減,無論太陽能電池表面抗反射層之層數為何,在波長約1050 nm以上其反射率皆超過20%。在銅銦鎵硒薄膜太陽能電池方面,將氧化鋅/摻鋁之氧化鋅(ZnO/AZO)雙層透明導電層以及硫化鎘(CdS)緩衝層納入抗反射層之設計(吸收層厚度為2 μm,並考慮背金屬之反射),所得之單層抗反射層在波長範圍為350 nm至1200 nm、角度範圍為0˚至80˚,所得之平均反射率為6.18%。
最後,將本研究所使用之模擬退火演算法所得之結果,與其他方法如利用基因演算法與五次折射率函數文獻之結果做比較,以證明其優異性。
摘要(英) This research investigates the optimizations of antireflection (AR) coatings for solar cells using simulated annealing (SA) algorithm incorporated with the solar irradiance spectrum at Earth’’s surface (AM1.57 radiation). Material dispersions and reflections from the planar backside metal are considered in the rigorous electromagnetic calculations. Moreover, the AR parameters are restricted to physically realizable indices and thicknesses so that the optimized results are more practically applicable.
Optimized AR coatings for bulk crystalline silicon (Si), thin film CuIn1-xGaxSe2 (CIGS), thin film amorphous Si solar cells as three representative cases are presented and the effect of solar spectrum in the AR coating designs is investigated. In general, angle-averaged reflectance of a solar-spectrum-incorporated AR design is shown to be smaller and more uniform in the spectral range with relatively stronger solar irradiance. Thus the optimized results predict the smallest possible reflectance that could be obtained on the surfaces of solar cells.
For low-cost fabrication purposes, a two-layer AR coating on a metal-backed crystalline Si of thickness 300 is shown to reduce the average reflectance to 11.29% over nm and . The angle-averaged reflectance spectra show that the decreasing absorption coefficient of the Si produces high angle-averaged reflectance of for nm, regardless of the number of layers used in the AR coating. On the other hand, by incorporating the transparent conductive ZnO/AZO layer and CdS buffer layer as part of the AR coating in CIGS solar cells ( -thick CIGS layer with a back reflector), a single AR layer is shown to possibly provide an average reflectance of 6.18% for wavelengths ranging from 350 nm to 1200 nm and incident angles from 0? to 80?.
Finally, comparisons are made between the SA optimized results and those obtained using other approaches such as a genetic algorithm or a conventional quintic index profile to demonstrate theoretically the advantages of the proposed method.
關鍵字(中) ★ 最佳化設計
★ 抗反射層
★ 太陽能電池
★ 模擬退火
關鍵字(英) ★ solar cells
★ anti-reflection coatings
★ simulated annealing
論文目次 中文摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
第二章 最佳化演算法與均勻多層膜之電磁描述 6
2.1 最佳化演算法 - 模擬退火演算法(Simulated Annealing Algorithm) 6
2.1.1 模擬退火法簡介 7
2.1.2 模擬退火法的重要參數 8
2.1.3  SA詳細運作流程 14
2.1.4 測試模擬退火法 18
2.2 多層介電質之反射係數與透射係數之計算 22
2.2.1 單層薄膜 23
2.2.2 雙層薄膜 26
2.2.3 多層薄膜 28
第三章 抗反射層之最佳化設計 31
3.1 最佳化設計之參數 31
3.2平均反射率與角度平均反射率之定義 33
第四章 計算結果與討論 35
4.1塊材型矽晶、非晶矽薄膜以及銅銦鎵硒薄膜太陽能電池之抗反射層最佳化設計結果 35
4.2 用於塊材矽晶太陽能電池之二氧化矽/二氧化鈦(SiO2/TiO2)雙層抗反射層 52
4.3 太陽輻射照度光譜於最佳化設計之影響 54
4.4 背電極反射與考慮吸收層厚度對計算反射率之影響 56
4.5 研究結果分析與其他文獻比較 57
第五章 結論 64
參考文獻 66
參考文獻 [1] O. S. Heavens, Optical Properties of Thin Solid Films, p. 51, New York: Dover Publications, Inc., 1991.
[2] J. K. Kim, A. N. Noemaun, F. W. Mont, D. Meyaard, E. F. Schubert, D. J. Poxson, H. Kim, C. Sone, and Y. Park, “Elimination of total internal reflection in GaInN light-emitting diodes by graded-refractive-index micropillars”, Appl. Phys. Lett., vol. 93, p. 221111, Dec. 2008.
[3] J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual”, Proc. London Math. Soc., Vol. 11, pp. 51–56, Feb. 1880.
[4] W. H. Southwell, “Gradient-index antireflection coatings”, Opt. Lett., vol. 8, no. 11, pp. 584-586, Nov. 1983.
[5] E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures”, J. Opt. Soc. Am. A, vol. 12, no. 2, pp. 333-339, Feb. 1995.
[6] J. Zhao, and M. A. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells”, IEEE Trans. Electron Devices , vol. 38, no. 8, pp. 1925-1934, Aug. 1991.
[7] J. Zhao, A. Wang, P. Campbell, and M. A. Green, “22.7% efficient PERL silicon solar cell module with a textured front surface”, IEEE 26th PVSC, Sep. 30-Oct. 3,1997, pp. 1133-1136.
[8] R. R. Bilyalov, L. Stalmans, L. Schirone, and Claude L´evy-Cl´ement, “Use of Porous Silicon Antireflection Coating in Multicrystalline Silicon Solar Cell Processing”, IEEE Trans. Electron Devices, vol. 46, no. 10, pp. 2035-2040, Oct. 1999.
[9] P. Charoensirithavorn and S. Yoshikawa, “Dye-sensitized Solar Cell Based on ZnO Nanorod Arrays”, The 2nd Joint Int. Conf. on “Sustainable Energy and Environment”, Nov. 2006.
[10] N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, “Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells”, IEEE Trans. Electron Devices, vol. 54, no. 8, pp. 1926-1933, Aug. 2007.
[11] W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells”, J. Appl. Phys., vol. 102, p. 103105-1, Nov. 2007.
[12] S. C. Kim and I. Sohn, “Simulation of Energy Conversion Efficiency of a Solar Cell with Gratings”, J. Opt. Soc. Korea, vol. 14, no. 2, pp. 142-145, Jun. 2010.
[13] C.-H. Sun, W.-L. Min, N. C. Linn, and P. Jiang, B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon”, Appl. Phys. Lett., vol. 91, p. 231105, Dec. 2007.
[14] Y. Zhao and J. Wang, “Colloidal subwavelength nanostructures for antireflection optical coatings”, Opt. Lett., vol. 30, no. 14, pp. 1885-1887, Jul. 2005.
[15] Y.-R. Lin, H.-P. Wang, C.-A. Lin, and J.-H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings”, J. Appl. Phys., vol. 106, pp. 114310, Dec. 2009.
[16] U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers”, Opt. Express, vol. 17, no. 11, pp. 8704-8708, May 2009.
[17] J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection”, Nature Photon., vol. 1, pp. 176-179, Mar. 2007.
[18] M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization”, Opt. Lett., vol. 33, no. 21, pp. 2527-2529, Nov. 2008.
[19] S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics”, Appl. Phys. Lett., vol. 95, pp. 251108, Dec. 2008.
[20] M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm”, Opt. Express, vol. 16, no. 8, pp. 5290-5298, Apr. 2008.
[21] C.-H. Chang, L. Waller, and G. Barbastathis, “Design and optimization of broadband wide-angle antireflection structures for binary diffractive optics”, Opt. Lett., vol. 35, no. 7, pp. 907-909, Apr. 2010.
[22] H. Elfström, T. Vallius, M. Kuittinen, J. Turunen, T. Clausnitzer, and E.-B. Kley, “Diffractive elements with novel antireflection film stacks” Opt. Express, vol. 12, no. 25, pp.6385-6390, Dec 2004.
[23] Y.-J. Chang and Y.-T. Chen, “Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum”, Opt. Express, vol. 19, no. S4,pp. A875-A887, Jul. 2011.
[24] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by Simulated Annealing”, Science, Vol. 220, No. 4598, pp. 671-680, May 1983.
[25] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, “Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., vol. 21, no. 6, pp. 1087-1092, Jun. 1953.
[26] A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm”, ACM Trans. on Math. Soft., vol. 13, no. 3, pp. 262-280, Sep. 1987.
[27] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications, Chapter 5.2, Dordrecht, Holland: D. Reidel Publishing Company, 1987.
[28] P. J. M. van Laarhoven and E. H. L. Aarts, “A general approach to combinatorial optimization problems”, Philips J. Res., Vol. 40, No. 4, pp. 193-226, 1985.
[29] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications, pp. 61-62, Dordrecht, Holland: D. Reidel Publishing Company, 1987.
[30] O. S. Heavens, Optical Properties of Thin Solid Films, pp. 55-62, New York: Dover Publications, Inc..
[31] M. Fox, Optical Properties of Solids, New York : Oxford University Press.
[32] E. D. Palik, Handbook of Optical Constants of Solids, USA: Academic Press Inc., 1985.
[33] R. E. Bird, R. L. Hulstrom, A. W. Kliman, and H. G. Eldering, “Solar spectral measurements in the terrestrial environment”, Appl. Opt., vol. 21, no. 8, pp. 1430-1436, Apr. 1982.
[34] O. Schultz, S. W. Glunz, and G. P. Willeke, “Multicrystalline Silicon Solar Cells Exceeding 20% Efficiency”, Prog. Photovoltaic Res. Appl., vol. 12, pp. :553–558, Aug. 2004.
[35] 顧鴻濤, 太陽能電池元件導論 - 材料、元件、製程、系統, 全威圖書有限公司, 2009.
[36] T.Miyano, R. Hashimoto, Y. Kanda, T. Mise, and T. Nakada, “Bifacial CIGS Thin Film Solar Cells Using TCO Back Contacts”, in Technical Digest Int. PVSEC-17, Fukuoda, Japan, 2007.
[37] Y. Hamakawa, Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications, Germany: Springer, 2004.
[38] M. Pagliaro, G. Palmisano, R. Ciriminna, Flexible Solar Cells, Germany: Weinheim, 2008.
[39] S. Ishizuka, H. Shibata, A. Yamada, P. Fons, K. Sakurai, K. Matsubara, and S. Niki, “Growth of polycrystalline Cu(In,Ga)Se2 thin films using a radio frequency-cracked Se-radical beam source and application for photovoltaic devices” Appl. Phys. Lett., vol. 91, p. 041902, Jul. 2007.
[40] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, and S. Niki, “Alkali incorporation control in Cu(In,Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency”, Appl. Phys. Lett., vol. 93, pp. 124105, Sep. 2008.
[41] Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films”, Thin Solid Films 496, pp. 520 – 525, Sep. 2005.
[42] J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: Foom dielectric function to solar cell structures”, pp. 001982- 001987, 34th IEEE Photovoltaic Specialists Conf. PVSC, 2009.
[43] P. D. Paulson, R. W. Birkmire, and W. N. Shafarman, “Optical characterization of CuIn1-xGaxSe2 alloy thin films by spectroscopic ellipsometry”, J. Appl. Phys, vol. 94, no. 2, pp. 879-888, Jul. 2003.
[44] R. Hull, R. M. Osgood, J. Parisi H. Warlimont, Transparent Conductive Zinc Oxide - Basics and Applications in Thin Film Solar Cells, Berlin: Springer, 2004.
[45] D. Dubreuil, J.-P. Ganne, G. Berginc, and F. Terracher, “Optical and electrical properties between 0.4 and 12 μm for Sn-doped In2O3 films by pulsed laser deposition and cathode sputtering”, Appl. Opt., vol. 46, no. 23, p. 5709, Aug. 2007.
[46] R. E. I. Schropp, and M. Zeman, “New Developments in Amorphous Thin-Film Silicon Solar Cells”, IEEE Trans. Electron Devices, vol. 46, no. 10, pp. 2086-2092, Oct. 1999.
[47] T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics”, J. Appl. Phys., Vol. 103, p. 114509, Jun. 2008.
[48] P. Obermeyer, C. Haase, and H. Stiebig, “Advanced light trapping management by diffractive interlayer for thin-film silicon solar cells”, Appl. Phys. Lett., vol. 92, p. 181102, May 2008.
[49] T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Flexible micromorph tandem a-Si/_c-Si solar cells”, J. Appl. Phys., vol. 107, p. 014507, Jan. 2010.
[50] S.-D. Mo, W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anattase, and brookite”, Phys. Rev. B, vol. 51, no. 19, pp. 13023-13032, May 1995.
指導教授 張殷榮(Yin-Jung Chang) 審核日期 2011-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明