博碩士論文 982206064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.237.61.235
姓名 林柏至(Po-Chih Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發
(Development of an Iterative Phase-Shifting Algorithm and a Subaperture Phase-Stitching Algorithm for Aspheric Testing)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置
★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發★ 小動物針孔單光子放射電腦斷層掃描系統之系統校正與配置最佳化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光學元件檢測中,量測非球面透鏡是一項極具挑戰的研究工作,從干涉儀校準與控制、雷射光源穩定性、重建非球面演算法與量測平台的設計,每一個主題,都需要不同領域的專家,精心的設計與研究來完成。本研究將重心放在非球面量測資料擷取完成後的計算處理,將開發一系列非球面相位重建演算法。
本研究利用子孔徑接合的方式,完整量測非球面透鏡,而欲使用這樣的方法,必須完成兩個主要的目標,第一:單一子孔徑相位重建演算法,本研究以五步相移干涉術與最小平方誤差法為基礎,利用迭代的非線性擬合方式來開發高誤差容忍度的相移干涉術,並搭配自行開發、以Zernike多項式擬合法為基礎的相位解纏繞演算法。第二:子孔徑相位接合演算法,以最小平方法為基礎,找出重疊區域的誤差最小值,作環狀相位接合,最後再以中央孔徑為基準,利用線性擬合的方式,接合不同半徑的環狀區域,完整重建非球面鏡。
演算法模擬實驗結果,當所有的子孔徑干涉條紋內含振動誤差時,經過一系列非球面重建演算法之後,所得到的誤差殘餘值為0.006 waves,符合一般干涉儀的精度標準。此演算法搭配研究團隊所開發的非球面干涉儀,將可處理1000 個波長的非球面度,相較於現有儀器的可量測範圍,提高了20倍之多,將可透過精密與高動態範圍的非球面檢測能力,提升非球面光學元件的產品層次。
摘要(英) In the field of optical testing, measuring an aspheric lens surface is a challenging task. It involves multiple topics such as the interferometer control, optical alignment, laser-source stability, phase reconstruction algorithm and mechanical stage design. Completing the work in each topic requires specific expertise, careful design and research in different fields. The main focus of this thesis was on developing a series of phase reconstruction algorithms.
Subaperture stitching interferometry was adopted for measuring aspheric surfaces in this research. The corresponding algorithm could be divided into two parts. The first one was the phase reconstruction algorithm for single subaperture. An iterative phase-shifting algorithm highly tolerant to phase-shift errors was developed based on the Hariharan five-step algorithm and nonlinear least-squares fitting. The phase map was then unwrapped by a Zernike-polynomial-based phase unwrapping process. The second one was the subaperture stitching algorithm. All subapertures in one annulus were stitched simultaneously in least-squares sense. By eliminating the relative piston and tilt between adjacent subapertures, the sum of squared errors in the overlapped regions was minimized. The phase stitching between annuli also utilized the least-squares method in the overlapped region.
Simulation studies were carried out to demonstrate the effectiveness of the proposed algorithm. Random phase shifts were introduced into the subaperture interferograms. The resulting rms phase residue after the phase-shifting, phase-unwrapping and phase-stitching processes was 0.006 waves, which met the precision requirement of common interferometers. The algorithm in conjunction with the aspheric interferometer developed in the research group will be capable of measuring aspheres with 1000-wave departure. The dynamic range is extended by 20 times compared with that of typical non-stitching optical-testing instruments.
關鍵字(中) ★ 非球面檢測
★ 子孔徑接合
★ 相移干涉術
關鍵字(英) ★ Interferometry
★ Subaperture Stitching
★ Aspheric Testing
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 文獻回顧與研究方法 4
1-4 論文架構 6
第二章 光學基礎理論與原理 8
2-1 基本干涉原理 8
2-2 基本軸對稱像差 10
2-3 相移干涉術-五步法 14
2-4 相移干涉術-最小平方差演算法 16
2-5 Standard Zernike 多項式 19
第三章 非球面透鏡之干涉檢測方法 22
3-1 Fizeau干涉儀基本介紹 23
3-2 量測平台簡介 24
第四章 相位重建演算法 26
4-1 消除傾斜誤差之迭代相移干涉術 26
4-2 二維相位解纏繞 33
第五章 子孔徑相位接合演算法 35
5-1 最小平方差之環狀接合演算法 35
5-2 環狀波前接合演算法 42
第六章 結果與討論 44
6-1 消除傾斜波之迭代相移干涉術 44
6-1-1 模擬參數設定 44
6-1-2 模擬結果 48
6-1-3 非線性擬合之光強均勻化的誤差分析 52
6-1-4 二維相位解纏繞模擬結果 55
6-1-5 平板標準鏡之量測結果 58
6-2 最小平方差之子孔徑相位接合演算法 62
6-2-1 無雜訊之子孔徑相位的模擬結果 63
6-2-2 加入相移干涉術之模擬結果 66
6-2-3 增加重疊區域之模擬結果 68
6-2-4 球面透鏡之環狀量測結果 70
6-3 環狀波前接合演算法 79
6-3-1 無雜訊之環狀相位模擬結果 79
6-3-2 加入相移干涉術之環狀相位模擬結果 83
6-3-3 全域球面透鏡之量測結果 84
第七章 結論與未來工作 89
參考文獻 91
參考文獻 [1]. H. Schreiber and J. H. Bruning, “Phase Shifting Interferometry,” in Optical Shop Testing, D. Malacara ed.3 (Wiley-Interscience, Hoboken, New Jersey, 2007)
[2]. K. Okada, A. Sato, and J. Tsujiuchi, “Simultaneous calculation of phase distribution and scanning phase shift in phase shifting interferometry,” Opt. Commun. 84, 118-124 (1991).
[3]. G.-S. Han and S.-W. Kim, “Numerical correction of reference phases in phase-shifting interferometry by iterative least-squares fitting,” Appl. Opt. 33, 7321-7325 (1994).
[4]. I.-B. Kong and S.-W. Kim, “General algorithm of phase-shifting interferometry by iterative least-squares fitting,” Opt. Eng. 34(1), 183-187 (1995).
[5]. C. Wei, M. Chen and Z. Wang, “General phase-stepping algorithm with automatic calibration of phase steps,” Opt. Eng. 38(8), 1357-1360 (1999).
[6]. Z. Wang and B. Han, “Advanced iterative algorithm for phase extraction of randomly phase shifted interferograms,” Opt. Lett. 29, 1671-1673 (2004).
[7]. M. Chen, H. Guo and C. Wei, “Algorithm immune to tilt phase-shifting error for phase-shifting interferometers,” Appl. Opt. 39, 3894-3898 (2000).
[8]. A. Dobroiu, A. Apostol, V. Nascov, and V. Damian, “Tilt compensating algorithm for phase-shift interferometry,” Appl. Opt. 41, 2435-2439 (2002).
[9]. J. Xu, Q. Xu, and L. Chai, “Iterative algorithm for phase extraction from interferograms with random and spatially nonuniform phase shifts,” Appl. Opt. 47, 480-485 (2008).
[10]. J. Fleig, P. Dumas, P. E. Murphy and G. W. Forbes, “An automated subaperture stitching interferometer workstation for spherical and aspherical surfaces,” Proc. SPIE 5188, 296-307 (2003).
[11]. S. Chen, S. Li and Y. Dai, “Iterative algorithm for subaperture stitching interferometry for general surfaces,” J. Opt. Soc. Am. A 22(9), 1929-1936 (2005).
[12]. S. Chen, S. Li, Y. Dai and Z. Zheng, “Testing of large optical surfaces with subaperture stitching,” Appl. Opt. 46(17), 3504-3509 (2007).
[13]. X. Hou, F. Wu, L. Yang, S. Wu and Q. Chen, “Stitching algorithm for annular subaperture interferometry,” Chin. Opt. Lett. 4(4), 211-214 (2006).
[14]. X. Wang, L. Wang, L. Yin, B. Zhang., D. Fan and X. Zhang, “Measurement of large aspheric surfaces by annular subaperture stitching interferometry,” Chin. Opt. Lett. 5(11), 645-647 (2007).
[15]. P. Zhang, H. Zhao, X. Zhou and J. Li, “Sub-aperture stitching interferometry using stereovision positioning technique,” Opt. Express 18, 15216-15222 (2010).
[16]. P. Mouroulis, J. Macdonald, “Geometrical Optics and Optical Design,” Ed.1, pp.204-212, Oxford University Press, Inc., 198 Madison Avenue, New York (1997).
[17]. V. N. Mahajan, “Zernike Polynomials and Wavefront Fitting,” in Optical Shop Testing, D. Malacara ed.3 (Wiley-Interscience, Hoboken, New Jersey, 2007).
[18]. M. V. Mantravadi, D. Malacara, “Newton, Fizeau, and Haidinger Interferometers,” in Optical Shop Testing, D. Malacara ed.3 (Wiley-Interscience, Hoboken, New Jersey, 2007).
[19]. P. C. Lin, Y. C. Chen, C. M. Lee and C. W. Liang, “An iterative tilt-immune phase-shifting algorithm,” Optical Fabrication and Testing, OMA6, Jackson Hole, Wyoming (2010).
[20] P. C. Lin, Y. C. Chen, C. M. Lee, and C. W. Liang, “A Subaperture Stitching Algorithm For Aspheric Surfaces,” Optical Measurement Systems for Industrial Inspection, SPIE Proceedings 8082, 80821G, Munich, Germany (2011).
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2011-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明